What is the coefficient of hydrogen, \( \mathrm{H}_{2} \), when the following equation is balanced? \[ \begin{array}{ll}\mathrm{Al}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+? \mathrm{H}_{2} \\ \text { Submit Request Answer }\end{array} \]
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To balance the equation \( \mathrm{Al} + \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} + ? \mathrm{H}_{2} \), we start by balancing the aluminum atoms. We see that there are 2 aluminum atoms in \( \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \), so we need 2 aluminum (Al) on the reactant side, giving us: \[ 2 \mathrm{Al} + \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} + ? \mathrm{H}_{2} \] Next, we have 3 sulfate ions (\( \mathrm{SO}_{4}^{2-} \)) from \( \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \). Therefore, we need 3 \( \mathrm{H}_{2} \mathrm{SO}_{4} \): \[ 2 \mathrm{Al} + 3 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} + ? \mathrm{H}_{2} \] Each \( \mathrm{H}_{2} \mathrm{SO}_{4} \) provides 2 hydrogen atoms, so 3 \( \mathrm{H}_{2} \mathrm{SO}_{4} \) gives us 6 hydrogen atoms on the reactant side. The hydrogen gas \( \mathrm{H}_{2} \) produced will contain 2 hydrogen atoms per molecule, so we can represent that as \( 3 \mathrm{H}_{2} \): Thus, the balanced equation is: \[ 2 \mathrm{Al} + 3 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} + 3 \mathrm{H}_{2} \] So, the coefficient of \( \mathrm{H}_{2} \) is 3.