The density of alcohol (ethanol) is found to be \( 0.8041 \frac{\mathrm{~g}}{\mathrm{~mL}} \) (true value \( =0.7980 \frac{\mathrm{~g}}{\mathrm{~mL}} \) ). Round your answer to 2 significant digits. \( \% \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To calculate the percent error, you can use the formula: \[ \text{Percent Error} = \left( \frac{|\text{Experimental Value} - \text{True Value}|}{\text{True Value}} \right) \times 100 \] Plugging in the values, you get: \[ \text{Percent Error} = \left( \frac{|0.8041 - 0.7980|}{0.7980} \right) \times 100 \approx 0.139\% \] Rounding to two significant digits gives you \( 0.14\% \). If you ever find yourself in a lab trying to determine the density of a substance, remember that even small errors can kick your results off balance! It's always a good idea to double-check your measurements and calculations. Precision is key in the scientific world, and meticulousness can really make a difference in your findings. On the flip side, if you end up with an error you'd rather not encounter, take a moment to review common pitfalls! One usual mistake is misreading measurements, especially when you're in a rush. Always ensure proper calibration of your equipment and take time to recalculate—after all, science is a marathon, not a sprint!