Pregunta
Express in terms of \( i \). \( \sqrt{-16} \) \( \sqrt{-16}=4 \) (Simplify your answer. Type your answer in the form \( \mathrm{a}+\mathrm{bi} \).)
Ask by Schwartz Burton. in the United States
Jan 27,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\[
\sqrt{-16} = 4i
\]
Solución
To express \( \sqrt{-16} \) in terms of the imaginary unit \( i \), follow these steps:
1. **Recall the Definition of \( i \):**
\[
i = \sqrt{-1}
\]
2. **Express \( \sqrt{-16} \) Using \( i \):**
\[
\sqrt{-16} = \sqrt{16 \times (-1)} = \sqrt{16} \times \sqrt{-1} = 4i
\]
3. **Write in the Form \( a + bi \):**
\[
\sqrt{-16} = 0 + 4i
\]
However, it's common and perfectly acceptable to write this simply as:
\[
\sqrt{-16} = 4i
\]
**Final Answer:**
\[
\sqrt{-16} = 4i
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
The Deep Dive
To express \( \sqrt{-16} \) in terms of \( i \), we need to use the fact that \( i \) is defined as \( \sqrt{-1} \). Thus, we can break it down as follows: \[ \sqrt{-16} = \sqrt{16} \cdot \sqrt{-1} = 4i \] So, in the form \( a + bi \), the answer is: \[ 0 + 4i \] Therefore, \( \sqrt{-16} = 0 + 4i \).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium