Responder
Here are the solutions to the quadratic equations in the given list:
1. **(3) \( x^{2} - 3x - 2 = 0 \)**
- Solutions: \( x \approx 3.56 \) and \( x \approx -0.56 \)
2. **(4) \( -x^{2} - x = -5 \)**
- Solutions: \( x \approx 1.79 \) and \( x \approx -2.79 \)
3. **(5) \( -x^{2} - 5x = 2 \)**
- Solutions: \( x \approx -0.44 \) and \( x \approx -4.56 \)
4. **(6)**
- No equation provided.
5. **(7) \( x^{2} - 11x = -30 \)**
- Solutions: \( x = 6 \) and \( x = 5 \)
6. **(8) \( x^{2} - 12 = 0 \)**
- Solutions: \( x \approx 3.46 \) and \( x \approx -3.46 \)
7. **(9) \( -2x^{2} + 6x = 0 \)**
- Solutions: \( x = 0 \) and \( x = 3 \)
8. **(9) \( 4x^{2} - 4x - 3 = 0 \)**
- Solutions: \( x \approx 1.5 \) and \( x \approx -0.5 \)
9. **(10) \( 3x^{2} + 8x = -2 \)**
- Solutions: \( x \approx -0.28 \) and \( x \approx -2.39 \)
If you need further explanations or assistance with any of these solutions, feel free to ask!
Solución
Natuurlijk, laten we de kwadratische vergelijkingen omzetten naar **wortelvorm** en de oplossingen berekenen. Hierbij geef ik zowel de exacte oplossingen als de benaderde waarden tot op twee decimalen.
---
### (3) \( x^{2} - 3x - 2 = 0 \)
**Wortelvorm:**
\[
x = \frac{3 \pm \sqrt{9 + 8}}{2} = \frac{3 \pm \sqrt{17}}{2}
\]
**Oplossingen:**
\[
x_1 = \frac{3 + \sqrt{17}}{2} \approx 3.56
\]
\[
x_2 = \frac{3 - \sqrt{17}}{2} \approx -0.56
\]
---
### (4) \( -x^{2} - x = -5 \)
**Stappen:**
\[
-x^{2} - x + 5 = 0 \quad \Rightarrow \quad x^{2} + x - 5 = 0
\]
**Wortelvorm:**
\[
x = \frac{-1 \pm \sqrt{1 + 20}}{2} = \frac{-1 \pm \sqrt{21}}{2}
\]
**Oplossingen:**
\[
x_1 = \frac{-1 + \sqrt{21}}{2} \approx 1.79
\]
\[
x_2 = \frac{-1 - \sqrt{21}}{2} \approx -2.79
\]
---
### (5) \( -x^{2} - 5x = 2 \)
**Stappen:**
\[
-x^{2} - 5x - 2 = 0 \quad \Rightarrow \quad x^{2} + 5x + 2 = 0
\]
**Wortelvorm:**
\[
x = \frac{-5 \pm \sqrt{25 - 8}}{2} = \frac{-5 \pm \sqrt{17}}{2}
\]
**Oplossingen:**
\[
x_1 = \frac{-5 + \sqrt{17}}{2} \approx -0.44
\]
\[
x_2 = \frac{-5 - \sqrt{17}}{2} \approx -4.56
\]
---
### (6)
*Er lijkt geen vergelijking te zijn opgegeven voor nummer 6.*
---
### (7) \( x^{2} - 11x = -30 \)
**Stappen:**
\[
x^{2} - 11x + 30 = 0
\]
**Wortelvorm:**
\[
x = \frac{11 \pm \sqrt{121 - 120}}{2} = \frac{11 \pm 1}{2}
\]
**Oplossingen:**
\[
x_1 = \frac{12}{2} = 6
\]
\[
x_2 = \frac{10}{2} = 5
\]
---
### (8) \( x^{2} - 12 = 0 \)
**Wortelvorm:**
\[
x = \pm \sqrt{12} = \pm 2\sqrt{3}
\]
**Oplossingen:**
\[
x_1 = 2\sqrt{3} \approx 3.46
\]
\[
x_2 = -2\sqrt{3} \approx -3.46
\]
---
### (9) \( -2x^{2} + 6x = 0 \)
**Stappen:**
\[
-2x^{2} + 6x = 0 \quad \Rightarrow \quad -2x(x - 3) = 0
\]
**Oplossingen:**
\[
x = 0 \quad \text{of} \quad x = 3
\]
---
### (9) \( 4x^{2} - 4x - 3 = 0 \)
**Wortelvorm:**
\[
x = \frac{4 \pm \sqrt{16 + 48}}{8} = \frac{4 \pm \sqrt{64}}{8} = \frac{4 \pm 8}{8}
\]
**Oplossingen:**
\[
x_1 = \frac{12}{8} = 1.5
\]
\[
x_2 = \frac{-4}{8} = -0.5
\]
---
### (10) \( 3x^{2} + 8x = -2 \)
**Stappen:**
\[
3x^{2} + 8x + 2 = 0
\]
**Wortelvorm:**
\[
x = \frac{-8 \pm \sqrt{64 - 24}}{6} = \frac{-8 \pm \sqrt{40}}{6} = \frac{-8 \pm 2\sqrt{10}}{6} = \frac{-4 \pm \sqrt{10}}{3}
\]
**Oplossingen:**
\[
x_1 = \frac{-4 + \sqrt{10}}{3} \approx -0.28
\]
\[
x_2 = \frac{-4 - \sqrt{10}}{3} \approx -2.39
\]
---
Mocht je verdere verduidelijking nodig hebben of andere vragen hebben, laat het gerust weten!
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución