The length of a rectangle is \( \sqrt{3}+1 \) and its breadth is \( \sqrt{3}-1 \). Determine the length of its diagonal in surd form. Show that \( \frac{\sqrt{12}-\sqrt{75}}{3^{\frac{3}{2}}}=-1 \) without using a calculator.
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To find the length of the diagonal \(d\) of the rectangle, we use the Pythagorean theorem, which states that the diagonal can be calculated as follows: \[ d = \sqrt{(\text{length})^2 + (\text{breadth})^2} = \sqrt{(\sqrt{3}+1)^2 + (\sqrt{3}-1)^2} \] Calculating each term: \[ (\sqrt{3}+1)^2 = 3 + 2\sqrt{3} + 1 = 4 + 2\sqrt{3} \] \[ (\sqrt{3}-1)^2 = 3 - 2\sqrt{3} + 1 = 4 - 2\sqrt{3} \] Now, add these results: \[ d^2 = (4 + 2\sqrt{3}) + (4 - 2\sqrt{3}) = 8 \] Thus, \[ d = \sqrt{8} = 2\sqrt{2} \] Now for the second part, we need to show that \[ \frac{\sqrt{12}-\sqrt{75}}{3^{\frac{3}{2}}} = -1 \] First, simplify the square roots: \[ \sqrt{12} = \sqrt{4 \times 3} = 2\sqrt{3} \] \[ \sqrt{75} = \sqrt{25 \times 3} = 5\sqrt{3} \] Thus, \[ \sqrt{12} - \sqrt{75} = 2\sqrt{3} - 5\sqrt{3} = -3\sqrt{3} \] Now, simplifying the denominator \(3^{\frac{3}{2}}\): \[ 3^{\frac{3}{2}} = \sqrt{27} = 3\sqrt{3} \] Now plug in the simplified values: \[ \frac{-3\sqrt{3}}{3\sqrt{3}} = -1 \] This confirms the equation is true.