Pregunta
Evaluate the following. \[ |-10|=10 \] \( |6|=6 \)
Ask by Horton Schultz. in the United States
Feb 03,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\(|-10| = 10\) and \(|6| = 6\).
Solución
Yes, both evaluations of the absolute values are correct. Here's a brief explanation:
1. **\(|-10| = 10\)**
- **Absolute Value Definition:** The absolute value of a number represents its distance from zero on the number line, regardless of direction.
- **Calculation:** The number \(-10\) is 10 units away from zero. Therefore, \(|-10| = 10\).
2. **\(|6| = 6\)**
- **Absolute Value Definition:** As above, it measures the distance from zero.
- **Calculation:** The number \(6\) is 6 units away from zero. Hence, \(|6| = 6\).
**Summary:**
- \(|-10| = 10\)
- \(|6| = 6\)
Both statements correctly apply the definition of absolute value.
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Mind Expander
Absolutely! The first statement, \( |-10|=10 \), is true because the absolute value of a number is always positive and represents its distance from zero on the number line, regardless of the direction. So, |-10| flips it to its positive counterpart, which is 10. On to the second statement, \( |6|=6 \), this is also true because 6 is already a positive number. So, the absolute value doesn’t change it at all! Both evaluations hold true; you’ve nailed it!
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium