Pregunta
Dsider the arithmetic sequence: \( -\frac{7}{2} ;-3 ;-\frac{5}{2} \ldots \) 2 Determine the general term of the sequence. \( \begin{array}{l}\text { The sum of the first } n \text { terms of this sequence is } 675 \text {. } \\ \text { Calculate the value of } n \text {. } \\ \text { A new sequence is formed by squaring each term of the given arithmetic } \\ \text { sequence. Determine which term of the new sequence will bave the } \\ \text { smallest value. }\end{array} \begin{array}{l}\text { (4) }\end{array} \)
Ask by Whittaker Willis. in South Africa
Feb 03,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
1. **General Term:** \( a_n = \frac{n - 8}{2} \)
2. **Value of \( n \):** 60
3. **Smallest Value in Squared Sequence:** 8th term
Solución
Let's analyze the given arithmetic sequence step by step to address each of your questions.
**Given Arithmetic Sequence:**
\[
-\frac{7}{2},\ -3,\ -\frac{5}{2},\ \ldots
\]
### 1. **Determine the General Term of the Sequence**
An arithmetic sequence has a general term formula:
\[
a_n = a_1 + (n - 1)d
\]
where:
- \( a_n \) = the \( n \)-th term
- \( a_1 \) = the first term
- \( d \) = common difference
- \( n \) = term number
**Identifying the Parameters:**
- First term (\( a_1 \)) = \( -\frac{7}{2} \)
- Second term = \( -3 \)
**Calculating the Common Difference (\( d \)):**
\[
d = \text{Second term} - \text{First term} = -3 - \left(-\frac{7}{2}\right) = -3 + \frac{7}{2} = -\frac{6}{2} + \frac{7}{2} = \frac{1}{2}
\]
**General Term Formula:**
\[
a_n = -\frac{7}{2} + (n - 1) \cdot \frac{1}{2} = \frac{n - 8}{2}
\]
So, the general term is:
\[
a_n = \frac{n - 8}{2}
\]
---
### 2. **Calculate the Value of \( n \) Given \( S_n = 675 \)**
**Sum of the First \( n \) Terms of an Arithmetic Sequence:**
\[
S_n = \frac{n}{2} (a_1 + a_n)
\]
Given \( S_n = 675 \), substitute the known values:
\[
675 = \frac{n}{2} \left(-\frac{7}{2} + \frac{n - 8}{2}\right)
\]
Simplify the expression inside the parentheses:
\[
-\frac{7}{2} + \frac{n - 8}{2} = \frac{n - 15}{2}
\]
Now, plug this back into the sum formula:
\[
675 = \frac{n}{2} \cdot \frac{n - 15}{2} = \frac{n(n - 15)}{4}
\]
Multiply both sides by 4 to eliminate the denominator:
\[
2700 = n(n - 15)
\]
Rearrange the equation:
\[
n^2 - 15n - 2700 = 0
\]
**Solving the Quadratic Equation:**
\[
n = \frac{15 \pm \sqrt{(15)^2 + 4 \cdot 2700}}{2} = \frac{15 \pm \sqrt{225 + 10800}}{2} = \frac{15 \pm \sqrt{11025}}{2} = \frac{15 \pm 105}{2}
\]
This yields two possible solutions:
\[
n = \frac{15 + 105}{2} = 60 \quad \text{or} \quad n = \frac{15 - 105}{2} = -45
\]
Since \( n \) must be a positive integer, we discard \( -45 \):
\[
n = 60
\]
**Therefore, the value of \( n \) is 60.**
---
### 3. **Determine Which Term of the New Sequence (Squared Terms) Has the Smallest Value**
**Forming the New Sequence by Squaring Each Term:**
\[
b_n = (a_n)^2 = \left(\frac{n - 8}{2}\right)^2 = \frac{(n - 8)^2}{4}
\]
**Analyzing the Squared Sequence:**
The expression \( \frac{(n - 8)^2}{4} \) is a quadratic function in terms of \( n \), which represents a parabola opening upwards. The minimum value of this parabola occurs at its vertex.
**Finding the Vertex:**
For a quadratic function \( f(n) = \frac{(n - 8)^2}{4} \), the vertex occurs at \( n = 8 \).
**Conclusion:**
- The smallest value of the squared sequence \( b_n \) occurs at \( n = 8 \).
- Therefore, the **8th term** of the new sequence has the smallest value.
---
**Summary:**
1. **General Term:** \( a_n = \frac{n - 8}{2} \)
2. **Value of \( n \) for \( S_n = 675 \):** \( n = 60 \)
3. **Term with Smallest Value in Squared Sequence:** 8th term
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium