Pregunta
upstudy study bank question image url

(07) If the algebraic measure of the moment of force \( \vec{F} \) about each of the point \( \mathrm{O}(0,0), \mathrm{D}(1,0), \mathrm{E}(0,2) \) equals \( 27,18,40 \frac{1}{2} \) moment unit, find: \( \vec{F} \)

Ask by Brewer Garrett. in Egypt
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The force vector \( \vec{F} \) is \( \left( \frac{27}{4},\; 9 \right) \).

Solución

To determine the force vector \( \vec{F} = (F_x, F_y) \) given the moments about three points, we'll follow a systematic approach. ### Given: 1. **Moment about \( \mathrm{O}(0,0) \)**: \[ M_O = x F_y - y F_x = 27 \] 2. **Moment about \( \mathrm{D}(1,0) \)**: \[ M_D = (x - 1) F_y - y F_x = 18 \] 3. **Moment about \( \mathrm{E}(0,2) \)**: \[ M_E = x F_y - (y - 2) F_x = 40.5 \] ### Step-by-Step Solution: 1. **Subtracting Moment Equations**: - Subtract \( M_D \) from \( M_O \): \[ M_O - M_D = [x F_y - y F_x] - [(x - 1) F_y - y F_x] = F_y = 27 - 18 = 9 \] \[ F_y = 9 \] - Subtract \( M_O \) from \( M_E \): \[ M_E - M_O = [x F_y - (y - 2) F_x] - [x F_y - y F_x] = 2 F_x = 40.5 - 27 = 13.5 \] \[ F_x = \frac{13.5}{2} = 6.75 = \frac{27}{4} \] 2. **Final Force Vector**: \[ \vec{F} = \left( \frac{27}{4}, \, 9 \right) \] ### Conclusion: The force vector \( \vec{F} \) is: \[ \boxed{\vec{F} = \left( \dfrac{27}{4},\;\;9 \right)} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To solve for the force vector \( \vec{F} \) based on the given moments about the points, we start by establishing the relationship between the moment of a force and the position vector. The moment \( \vec{M} \) about a point \( \vec{r} \) due to a force \( \vec{F} \) applied at \( \vec{r}_F \) is given by: \[ \vec{M} = \vec{r} \times \vec{F} \] 1. **For point O(0,0)**: The moment is given as 27 units, which can be expressed as: \[ M_O = x_F F_y - y_F F_x = 27 \] 2. **For point D(1,0)**: The moment here is 18 units, leading to the equation: \[ M_D = (x_F - 1) F_y - y_F F_x = 18 \] 3. **For point E(0,2)**: The moment is given as \( 40 \frac{1}{2} = 40.5 \) units: \[ M_E = x_F F_y - (y_F - 2) F_x = 40.5 \] Now we can have a system of equations based on the above moments. Let's denote \( F_x \) and \( F_y \) as the components of the force \( \vec{F} \). From the moments, we get the following equations: 1. \( -y_F F_x + x_F F_y = 27 \) (1) 2. \( -y_F F_x + (x_F - 1) F_y = 18 \) (2) 3. \( x_F F_y - (y_F - 2) F_x = 40.5 \) (3) Now let’s manipulate these equations. From equation (1), we can express \( y_F F_x \): \[ y_F F_x = x_F F_y - 27 \quad (4) \] Substituting equation (4) into equation (2) gives: \[ -(x_F F_y - 27) + (x_F - 1) F_y = 18 \] This simplifies to: \[ -x_F F_y + 27 + (x_F - 1) F_y = 18 \implies (1 - 2)x_F F_y + 27 = 18 \implies -x_F F_y = -9 \implies x_F F_y = 9 \quad (5) \] Now, substituting equation (5) back into equation (4): \[ y_F F_x = 9 - 27 = -18 \quad (6) \] Next, substitute equations (5) and (6) into equation (3) to find \( F_x \) and \( F_y \): From equation (3): \[ 9 - (y_F - 2) F_x = 40.5 \] Using (6), we can substitute \( y_F = -\frac{18}{F_x} \): \[ 9 - \left(-\frac{18}{F_x} - 2\right) F_x = 40.5 \implies 9 + 18 + 2 F_x = 40.5 \implies 2F_x = 13.5 \implies F_x = 6.75 \] Now substituting \( F_x \) into (6) to get \( y_F \): \[ y_F F_{x} = -18 \implies y_F (6.75) = -18 \implies y_F = \frac{-18}{6.75} = -2.67 \] So the components of force \( \vec{F} \) are: \[ \vec{F} = (6.75, -2.67) \] Hence, the final result is: \[ \vec{F} = (6.75, -2.67) \, \text{units} \]

preguntas relacionadas

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad