Pregunta
upstudy study bank question image url

Lynette bought a new car for \( \$ 34,000 \). She paid a \( 20 \% \) down payment and financed the remaining balance for 48 months with an APR of \( 4.3 \% \). Assuming she made monthly payments, determine the total cost of Lynette's car. Round your answer to the nearest cent, if necessary.

Ask by Willis Nguyen. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The total cost of Lynette's car is approximately \$36,454.81.

Solución

To determine the total cost of Lynette's car, we need to follow these steps: 1. **Calculate the down payment.** 2. **Determine the financed amount.** 3. **Calculate the monthly payment using the loan formula.** 4. **Calculate the total cost of the car including the down payment and total payments made.** ### Step 1: Calculate the Down Payment The down payment is \( 20\% \) of the car's price. \[ \text{Down Payment} = 0.20 \times 34000 \] ### Step 2: Determine the Financed Amount The financed amount is the total price minus the down payment. \[ \text{Financed Amount} = 34000 - \text{Down Payment} \] ### Step 3: Calculate the Monthly Payment The formula for the monthly payment \( M \) on an amortizing loan is given by: \[ M = P \frac{r(1 + r)^n}{(1 + r)^n - 1} \] Where: - \( P \) is the loan amount (financed amount), - \( r \) is the monthly interest rate (annual rate divided by 12), - \( n \) is the number of payments (months). First, we need to calculate \( r \): \[ r = \frac{4.3\%}{12} = \frac{0.043}{12} \] Now we can calculate the monthly payment. ### Step 4: Calculate the Total Cost of the Car The total cost of the car is the sum of the down payment and the total of all monthly payments. \[ \text{Total Cost} = \text{Down Payment} + (M \times n) \] Now, let's perform the calculations step by step. 1. Calculate the down payment. 2. Calculate the financed amount. 3. Calculate the monthly payment. 4. Calculate the total cost. Let's compute these values. Calculate the value by following steps: - step0: Calculate: \(0.2\times 34000\) - step1: Multiply the numbers: \(6800\) Calculate or simplify the expression \( 34000 - (0.20 * 34000) \). Calculate the value by following steps: - step0: Calculate: \(34000-\left(0.2\times 34000\right)\) - step1: Multiply the numbers: \(34000-6800\) - step2: Subtract the numbers: \(27200\) Calculate or simplify the expression \( 0.043 / 12 \). Calculate the value by following steps: - step0: Calculate: \(\frac{0.043}{12}\) - step1: Convert the expressions: \(\frac{\frac{43}{1000}}{12}\) - step2: Multiply by the reciprocal: \(\frac{43}{1000}\times \frac{1}{12}\) - step3: Multiply the fractions: \(\frac{43}{1000\times 12}\) - step4: Multiply: \(\frac{43}{12000}\) Calculate or simplify the expression \( 27200 * (\frac{43}{12000} * (1 + \frac{43}{12000})^{48}) / ((1 + \frac{43}{12000})^{48} - 1) \). Calculate the value by following steps: - step0: Calculate: \(\frac{27200\left(\frac{43}{12000}\left(1+\frac{43}{12000}\right)^{48}\right)}{\left(\left(1+\frac{43}{12000}\right)^{48}-1\right)}\) - step1: Remove the parentheses: \(\frac{27200\times \frac{43}{12000}\left(1+\frac{43}{12000}\right)^{48}}{\left(1+\frac{43}{12000}\right)^{48}-1}\) - step2: Add the numbers: \(\frac{27200\times \frac{43}{12000}\left(\frac{12043}{12000}\right)^{48}}{\left(1+\frac{43}{12000}\right)^{48}-1}\) - step3: Add the numbers: \(\frac{27200\times \frac{43}{12000}\left(\frac{12043}{12000}\right)^{48}}{\left(\frac{12043}{12000}\right)^{48}-1}\) - step4: Multiply: \(\frac{\frac{731\times 12043^{48}}{15\times 2^{239}\times 375^{48}}}{\left(\frac{12043}{12000}\right)^{48}-1}\) - step5: Subtract the numbers: \(\frac{\frac{731\times 12043^{48}}{15\times 2^{239}\times 375^{48}}}{\frac{12043^{48}-12000^{48}}{12000^{48}}}\) - step6: Multiply by the reciprocal: \(\frac{731\times 12043^{48}}{15\times 2^{239}\times 375^{48}}\times \frac{12000^{48}}{12043^{48}-12000^{48}}\) - step7: Rewrite the expression: \(\frac{731\times 12043^{48}}{15\times 2^{239}\times 375^{48}}\times \frac{15^{48}\times 800^{48}}{12043^{48}-12000^{48}}\) - step8: Reduce the numbers: \(\frac{731\times 12043^{48}}{2^{239}\times 375^{48}}\times \frac{15^{47}\times 800^{48}}{12043^{48}-12000^{48}}\) - step9: Rewrite the expression: \(\frac{731\times 12043^{48}}{2^{239}\times 15^{48}\times 25^{48}}\times \frac{15^{47}\times 800^{48}}{12043^{48}-12000^{48}}\) - step10: Reduce the numbers: \(\frac{731\times 12043^{48}}{2^{239}\times 15\times 25^{48}}\times \frac{800^{48}}{12043^{48}-12000^{48}}\) - step11: Rewrite the expression: \(\frac{731\times 12043^{48}}{2^{239}\times 15\times 25^{48}}\times \frac{32^{48}\times 25^{48}}{12043^{48}-12000^{48}}\) - step12: Rewrite the expression: \(\frac{731\times 12043^{48}}{2^{239}\times 15\times 25^{48}}\times \frac{2^{240}\times 25^{48}}{12043^{48}-12000^{48}}\) - step13: Reduce the numbers: \(\frac{731\times 12043^{48}}{15\times 25^{48}}\times \frac{2\times 25^{48}}{12043^{48}-12000^{48}}\) - step14: Rewrite the expression: \(\frac{731\times 12043^{48}}{5\times 3\times 25^{48}}\times \frac{2\times 25^{48}}{12043^{48}-12000^{48}}\) - step15: Rewrite the expression: \(\frac{731\times 12043^{48}}{5\times 3\times 25^{48}}\times \frac{2\times 5^{96}}{12043^{48}-12000^{48}}\) - step16: Reduce the numbers: \(\frac{731\times 12043^{48}}{3\times 25^{48}}\times \frac{2\times 5^{95}}{12043^{48}-12000^{48}}\) - step17: Rewrite the expression: \(\frac{731\times 12043^{48}}{3\times 5^{96}}\times \frac{2\times 5^{95}}{12043^{48}-12000^{48}}\) - step18: Reduce the numbers: \(\frac{731\times 12043^{48}}{3\times 5}\times \frac{2}{12043^{48}-12000^{48}}\) - step19: Multiply the fractions: \(\frac{731\times 12043^{48}\times 2}{15\left(12043^{48}-12000^{48}\right)}\) - step20: Multiply: \(\frac{1462\times 12043^{48}}{15\times 12043^{48}-15\times 12000^{48}}\) Calculate or simplify the expression \( 6800 + (617.808513 * 48) \). Calculate the value by following steps: - step0: Calculate: \(6800+\left(617.808513\times 48\right)\) - step1: Multiply the numbers: \(6800+29654.808624\) - step2: Add the numbers: \(36454.808624\) Let's summarize the calculations step by step: 1. **Down Payment:** \[ \text{Down Payment} = 0.20 \times 34000 = 6800 \] 2. **Financed Amount:** \[ \text{Financed Amount} = 34000 - 6800 = 27200 \] 3. **Monthly Interest Rate:** \[ r = \frac{4.3\%}{12} = \frac{0.043}{12} \approx 0.00358333 \] 4. **Monthly Payment Calculation:** Using the formula for the monthly payment: \[ M = 27200 \frac{0.00358333(1 + 0.00358333)^{48}}{(1 + 0.00358333)^{48} - 1} \approx 617.81 \] 5. **Total Cost of the Car:** \[ \text{Total Cost} = 6800 + (617.81 \times 48) \approx 36454.81 \] Thus, the total cost of Lynette's car, rounded to the nearest cent, is approximately: \[ \boxed{36454.81} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the total cost of Lynette's car, we first need to calculate the down payment and the financed amount. 1. **Calculate the down payment:** \[ \text{Down Payment} = 20\% \times 34,000 = 0.20 \times 34,000 = 6,800 \] 2. **Calculate the financed amount:** \[ \text{Financed Amount} = \text{Total Price} - \text{Down Payment} = 34,000 - 6,800 = 27,200 \] 3. **Calculate the monthly interest rate and the total number of payments:** \[ \text{Monthly Interest Rate} = \frac{4.3\%}{12} = \frac{0.043}{12} \approx 0.00358333 \] \[ n = 48 \text{ months} \] 4. **Calculate the monthly payment using the loan payment formula:** The formula for the monthly payment \( M \) is given by: \[ M = P \frac{r(1+r)^n}{(1+r)^n - 1} \] Where: - \( P \) = principal amount (financed amount) - \( r \) = monthly interest rate - \( n \) = number of payments Plugging in the values: \[ M = 27,200 \times \frac{0.00358333(1 + 0.00358333)^{48}}{(1 + 0.00358333)^{48} - 1} \] First, calculate \( (1 + r)^{48} \): \[ (1 + 0.00358333)^{48} \approx 1.183472 \] Now substituting back: \[ M \approx 27,200 \times \frac{0.00358333 \times 1.183472}{1.183472 - 1} \approx 27,200 \times \frac{0.00424736}{0.183472} \approx 27,200 \times 0.0231644 \approx 630.36 \] 5. **Calculate the total payments over 48 months:** \[ \text{Total Payments} = M \times n = 630.36 \times 48 \approx 30,241.28 \] 6. **Calculate the total cost of the car:** \[ \text{Total Cost} = \text{Down Payment} + \text{Total Payments} = 6,800 + 30,241.28 \approx 37,041.28 \] After rounding, the total cost of Lynette's car is approximately **$37,041.28**.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad