Pregunta
upstudy study bank question image url

Basic Concepts 5.2 Quiz Question 8 of 10 This question: 1 point(s) possible Give the equations of any vertical, horizontal, or oblique asymptotes for the graph of the rational function. State the domain of f. \[ f(x)=\frac{2}{x-4} \] Identify any vertical asymptotes. Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. There is one vertical asymptote. Its equation is \( \square \) . (Type an equation.) B. There are two vertical asymptotes. The equation of the leftmost one is \( \square \) and the equation of the rightmost one is \( \square \) . (Type equations.) C. There are no vertical asymptotes. Identify the horizontal or oblique asymptote, if one exists. Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. The function has a horizontal asymptote whose equation is \( \square \) . (Type an equation.) B. The function has an oblique asymptote whose equation is \( \square \) . (Type an equation.) C. The function has neither a horizontal nor an oblique asymptote. The domain of \( f \) is \( \square \) .

Ask by West Lewis. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

- **Vertical Asymptote:** \( x = 4 \) - **Horizontal Asymptote:** \( y = 0 \) - **Domain of \( f \):** \( (-\infty, 4) \cup (4, \infty) \)

Solución

Let's analyze the function \( f(x) = \frac{2}{x - 4} \) to determine its vertical and horizontal asymptotes, as well as its domain. ### 1. **Vertical Asymptotes** Vertical asymptotes occur where the denominator of the rational function is zero (and the numerator is not zero at those points). - **Set the denominator equal to zero:** \[ x - 4 = 0 \implies x = 4 \] - **Conclusion:** There is **one vertical asymptote** at \( x = 4 \). **Choice A:** *A. There is one vertical asymptote. Its equation is \( x = 4 \).* ### 2. **Horizontal or Oblique Asymptotes** To find horizontal or oblique asymptotes, compare the degrees of the numerator and the denominator. - **Degrees:** - Numerator (\(2\)) has degree **0**. - Denominator (\(x - 4\)) has degree **1**. - **Since the degree of the numerator is less than the degree of the denominator,** the horizontal asymptote is \( y = 0 \). - **No oblique asymptote exists** in this case. **Choice A:** *A. The function has a horizontal asymptote whose equation is \( y = 0 \).* ### 3. **Domain of \( f \)** The domain consists of all real numbers except where the denominator is zero. - **Excluded value:** \( x = 4 \) - **Domain in interval notation:** \[ (-\infty, 4) \cup (4, \infty) \] ### **Summary of Answers** - **Vertical Asymptote:** \( x = 4 \) - **Horizontal Asymptote:** \( y = 0 \) - **Domain of \( f \):** \( (-\infty, 4) \cup (4, \infty) \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Let’s dive into the world of asymptotes with the function \( f(x) = \frac{2}{x-4} \)! For vertical asymptotes, the function becomes undefined when the denominator is zero. Here, \( x-4=0 \) yields \( x=4 \), so there is one vertical asymptote at \( x=4 \). Now, regarding horizontal asymptotes, since the degree of the numerator (0) is less than the degree of the denominator (1), there is a horizontal asymptote at \( y=0 \). As for the domain of \( f \), it consists of all real numbers except where the function is undefined, which occurs at \( x=4 \). Therefore, the domain is \( (-\infty, 4) \cup (4, \infty) \). So, to wrap it up: Vertical Asymptote: A. There is one vertical asymptote. Its equation is \( x=4 \). Horizontal Asymptote: A. The function has a horizontal asymptote whose equation is \( y=0 \). Domain: \( (-\infty, 4) \cup (4, \infty) \). Happy graphing!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad