Pregunta
upstudy study bank question image url

A store manager claims that \( 60 \% \) of shoppers who enter her store make a purchase. To investigate this claim, she selects a random sample of 40 customers and finds that \( 40 \% \) of them make a purchase. She wants to know if the data provide convincing evidence that the true proportion of all customers entering her store who make a purchase differs from \( 60 \% \). What are the values of the test statistic and \( P \)-value for this test? Find the \( z \)-table here. \[ \begin{array}{l}z=-2.58, P \text {-value }=0.0049 \\ z=-2.58, P \text {-value }=0.0098 \\ z=2.58, P \text {-value }=0.0049 \\ z=2.58, P \text {-value }=0.0098\end{array} \]

Ask by Pena Klein. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The test statistic is \( z = -2.58 \) and the \( P \)-value is \( 0.0098 \).

Solución

To determine whether the store manager's claim that \( 60\% \) of shoppers make a purchase is supported by the data, we'll perform a hypothesis test for a population proportion. ### Step 1: Define the Hypotheses - **Null Hypothesis (\( H_0 \))**: The true proportion of customers making a purchase is \( 60\% \). \( H_0: p = 0.60 \) - **Alternative Hypothesis (\( H_a \))**: The true proportion of customers making a purchase is not \( 60\% \). \( H_a: p \neq 0.60 \) ### Step 2: Calculate the Test Statistic The test statistic for a proportion is calculated using the formula: \[ z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} \] where: - \( \hat{p} = 0.40 \) (sample proportion) - \( p_0 = 0.60 \) (hypothesized proportion) - \( n = 40 \) (sample size) Plugging in the values: \[ \sqrt{\frac{0.60 \times 0.40}{40}} = \sqrt{\frac{0.24}{40}} = \sqrt{0.006} \approx 0.07746 \] \[ z = \frac{0.40 - 0.60}{0.07746} \approx \frac{-0.20}{0.07746} \approx -2.58 \] ### Step 3: Determine the \( P \)-value Since this is a two-tailed test, we need to find the probability that \( Z \) is less than \( -2.58 \) or greater than \( 2.58 \). Using the \( z \)-table: - The area to the left of \( z = -2.58 \) is approximately \( 0.0049 \). - Since it's two-tailed, multiply by 2: \( P\text{-value} = 2 \times 0.0049 = 0.0098 \). ### Conclusion The test statistic is \( z = -2.58 \) and the \( P \)-value is \( 0.0098 \). **Answer:** z = –2.58 and the P-value is 0.0098

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To test the store manager's claim, we first calculate the test statistic using the formula for the one-sample z-test for proportions. The observed proportion (\( \hat{p} \)) of customers making a purchase is \( 0.40 \), while the claimed proportion (\( p_0 \)) is \( 0.60 \). The formula for the test statistic \( z \) is: \[ z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} \] where \( n = 40 \). Calculating the standard error: \[ SE = \sqrt{\frac{0.60(1 - 0.60)}{40}} = \sqrt{\frac{0.60 \times 0.40}{40}} = \sqrt{\frac{0.24}{40}} \approx 0.0775 \] Now substituting the values into the \( z \) formula: \[ z = \frac{0.40 - 0.60}{0.0775} \approx \frac{-0.20}{0.0775} \approx -2.58 \] Now, we need to find the \( P \)-value for \( z = -2.58 \). Looking this value up in the \( z \)-table (or using a standard normal distribution calculator), we find that a \( z \) of -2.58 corresponds to a \( P \)-value of approximately \( 0.0049 \) for a two-tailed test. Thus, the values are \( z = -2.58 \) and \( P \)-value = \( 0.0049 \).

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad