Pregunta
upstudy study bank question image url

For each of the linear inequalities, generate the associated line on the coordinate grid without a graphing calculator. To graph the lines, you will need to identify coordinates that can be represented by integers. Once the lines have been created, select the region containing the solutions to the system of linear inequalities. \( y \leq 3 \) \( x+3 y<5 \) \( y \geq 2 x-6 \)

Ask by Graham Ford. in the United States
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To graph the system of inequalities without a calculator, follow these steps: 1. **Graph Each Inequality:** - **\( y \leq 3 \):** Draw a horizontal line at \( y = 3 \) and shade below it. - **\( x + 3y < 5 \):** Draw the line \( x + 3y = 5 \) and shade below it. - **\( y \geq 2x - 6 \):** Draw the line \( y = 2x - 6 \) and shade above it. 2. **Identify the Overlapping Region:** - The solution is where all shaded areas overlap. This region includes points that satisfy all three inequalities simultaneously. 3. **Determine the Solution Region:** - The overlapping area is bounded by the intersection points \((-4, 3)\), \(\left(\frac{23}{7}, \frac{4}{7}\right)\), and \((4.5, 3)\). This region represents all points \((x, y)\) that meet all three inequalities.

Solución

To graph the system of linear inequalities without a graphing calculator, follow these steps for each inequality: 1. **Graph the Boundary Lines** 2. **Determine the Shading Region for Each Inequality** 3. **Identify the Solution Region Where All Shaded Areas Overlap** Let's apply these steps to each inequality in the system: ### 1. Graphing \( y \leq 3 \) **Boundary Line:** - The equality \( y = 3 \) is a **horizontal line** that passes through all points where the y-coordinate is 3. **Plotting Points:** - Choose integer values for \( x \) to find corresponding \( y \): - When \( x = -2 \), \( y = 3 \) → Point \((-2, 3)\) - When \( x = 0 \), \( y = 3 \) → Point \((0, 3)\) - When \( x = 2 \), \( y = 3 \) → Point \((2, 3)\) **Drawing the Line:** - Draw a horizontal line through the points \((-2, 3)\), \((0, 3)\), and \((2, 3)\). **Shading:** - Since the inequality is \( y \leq 3 \), shade **below** the line. ### 2. Graphing \( x + 3y < 5 \) **Boundary Line:** - Convert the inequality to the equality \( x + 3y = 5 \). **Plotting Points:** - Choose integer values for \( x \) to find corresponding \( y \): - When \( x = 0 \), \( 3y = 5 \) → \( y = \frac{5}{3} \) → Point \((0, \frac{5}{3})\) - When \( y = 0 \), \( x = 5 \) → Point \((5, 0)\) **Drawing the Line:** - Draw a straight line through \((0, \frac{5}{3})\) and \((5, 0)\). **Shading:** - Since the inequality is \( x + 3y < 5 \), shade **below** the line. ### 3. Graphing \( y \geq 2x - 6 \) **Boundary Line:** - Convert the inequality to the equality \( y = 2x - 6 \). **Plotting Points:** - Choose integer values for \( x \) to find corresponding \( y \): - When \( x = 0 \), \( y = -6 \) → Point \((0, -6)\) - When \( x = 3 \), \( y = 0 \) → Point \((3, 0)\) **Drawing the Line:** - Draw a straight line through \((0, -6)\) and \((3, 0)\). **Shading:** - Since the inequality is \( y \geq 2x - 6 \), shade **above** the line. ### 4. Identifying the Solution Region The solution to the system of inequalities is the region where all three shaded areas overlap. To precisely identify this region, follow these steps: **Finding Intersection Points:** 1. **Intersection of \( y = 3 \) and \( x + 3y = 5 \):** \[ y = 3 \\ x + 3(3) = 5 \\ x + 9 = 5 \\ x = -4 \\ \] → Intersection Point: \((-4, 3)\) 2. **Intersection of \( y = 3 \) and \( y = 2x - 6 \):** \[ 3 = 2x - 6 \\ 2x = 9 \\ x = 4.5 \\ \] → Intersection Point: \((4.5, 3)\) 3. **Intersection of \( x + 3y = 5 \) and \( y = 2x - 6 \):** \[ y = 2x - 6 \\ x + 3(2x - 6) = 5 \\ x + 6x - 18 = 5 \\ 7x = 23 \\ x = \frac{23}{7} \approx 3.2857 \\ y = 2\left(\frac{23}{7}\right) - 6 = \frac{46}{7} - \frac{42}{7} = \frac{4}{7} \approx 0.571 \\ \] → Intersection Point: \(\left(\frac{23}{7}, \frac{4}{7}\right)\) **Conclusion:** - **Solution Region:** The overlapping shaded area bounded by: - The horizontal line \( y = 3 \) (shaded below), - The line \( x + 3y = 5 \) (shaded below), and - The line \( y = 2x - 6 \) (shaded above). - **Vertices of the Solution Region:** - \((-4, 3)\) - \(\left(\frac{23}{7}, \frac{4}{7}\right)\) - \((4.5, 3)\) This region represents all the points \((x, y)\) that simultaneously satisfy all three inequalities. --- **Visual Representation:** While I can't provide a drawn graph here, you can create one by following these steps: 1. **Draw the Coordinate Axes:** - Label the x-axis and y-axis with appropriate scales. 2. **Plot Each Boundary Line:** - **\( y = 3 \):** A horizontal line crossing the y-axis at 3. - **\( x + 3y = 5 \):** A line passing through \((0, \frac{5}{3})\) and \((5, 0)\). - **\( y = 2x - 6 \):** A line passing through \((0, -6)\) and \((3, 0)\). 3. **Shade the Appropriate Regions:** - **\( y \leq 3 \):** Shade below the horizontal line. - **\( x + 3y < 5 \):** Shade below the sloping line. - **\( y \geq 2x - 6 \):** Shade above the other sloping line. 4. **Identify the Overlapping Shaded Area:** - This is your solution region, bounded by the intersection points identified above. By carefully plotting each line and shading the correct regions, you'll visually identify the set of all points that satisfy all three inequalities.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To graph the inequality \( y \leq 3 \), you start by drawing a horizontal line at \( y = 3 \). Since the inequality includes \( \leq \), you'll use a solid line. All points below this line are included in the solution region. Next, for the inequality \( x + 3y < 5 \), re-arrange it to get the line equation: \( y < -\frac{1}{3}x + \frac{5}{3} \). To create this line, you can identify points by plugging in integer values for \( x \). For example, using \( x = 0 \) gives \( y = \frac{5}{3} \), and \( x = 3 \) gives \( y = 0 \). Draw a dashed line through these points because the inequality is strict (<), meaning the line is not included in the solution region. The area below this line is your solution region. For the last inequality \( y \geq 2x - 6 \), rearrange to \( y = 2x - 6 \) and determine integer points. If \( x = 0 \), \( y = -6 \) and if \( x = 4 \), \( y = 2 \). Draw a solid line through these points due to the \( \geq \) sign, and shade the region above this line. The solution region for the system of inequalities is where all the shaded areas overlap. Look for the common area that adheres to all three inequalities to find your solution!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad