Pregunta
upstudy study bank question image url

How does the function \( f(x)=\frac{1}{2}(x+2)^{2}-3 \) compare to the parent function? Facing down since a is less than 1 with a vertex at \( (2,-3) \) Facing up since a is greater than 1 with a vertex as \( (2,-3) \). Stretched since a is less than 1 with a vertex at \( (-2,-3) \). Compressed since a is less than one with a vertex at \( (-2,-3) \)

Ask by Weston Patel. in the United States
Feb 07,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The function \( f(x) = \frac{1}{2}(x + 2)^2 - 3 \) is **compressed** compared to the parent function with its vertex at \( (-2, -3) \).

Solución

The function \( f(x) = \frac{1}{2}(x + 2)^2 - 3 \) can be compared to the parent quadratic function \( y = x^2 \) by analyzing its components: 1. **Vertex**: - The given function is in the vertex form \( f(x) = a(x - h)^2 + k \), where \((h, k)\) is the vertex. - Here, \( h = -2 \) and \( k = -3 \), so the vertex is at \( (-2, -3) \). 2. **Direction (Facing Up or Down)**: - The coefficient \( a = \frac{1}{2} \) is positive. - Since \( a > 0 \), the parabola **faces up**, just like the parent function. 3. **Vertical Stretching or Compression**: - The value of \( a = \frac{1}{2} \) is less than 1. - When \( |a| < 1 \), the parabola is **vertically compressed** compared to the parent function. This means it is wider and "flatter." Putting it all together, the correct description is: **Compressed since \( a \) is less than one with a vertex at \( (-2, -3) \).** **Answer:** Compressed since a is less than one with a vertex at (–2, –3).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

The function \( f(x) = \frac{1}{2}(x + 2)^2 - 3 \) is a transformation of the parent function \( f(x) = x^2 \). Firstly, the coefficient \( \frac{1}{2} \) means that the graph is compressed vertically compared to the parent function, making it "wider." The term \( (x + 2)^2 \) indicates a horizontal shift 2 units to the left, while the \(-3\) results in a downward shift by 3 units. Therefore, the vertex of this parabola is at \( (-2, -3) \). In real-world applications, understanding the transformations of quadratic functions can be crucial in fields like physics when modeling projectile motion. For instance, the vertex can represent the maximum height a projectile reaches before it starts to fall, and the changing parameters help us design scenarios like launching angles and initial speeds for desired trajectories.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad