Pregunta
upstudy study bank question image url

1. Find the HCF of a) 21 and 8 \[ \begin{array}{l} 21- \\ 8- \end{array} \] b) 108 and 270 \[ \begin{array}{l} 108- \\ 270- \end{array} \] 416 and 8 6- 8- d) \( 12-9 \) \( 12- \) \( 4- \)

Ask by Colon Schofield. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

- a) HCF of 21 and 8: 1 - b) HCF of 108 and 270: 54 - c) HCF of 416 and 8: 8 - d) HCF of 12 and 9: 3

Solución

Sure, let's find the Highest Common Factor (HCF) of each pair of numbers using the **Euclidean Algorithm**. The Euclidean Algorithm is an efficient method for computing the HCF of two numbers based on the principle that the HCF of two numbers also divides their difference. ### a) HCF of 21 and 8 **Step-by-Step Process:** 1. **Divide 21 by 8:** \[ 21 \div 8 = 2 \quad \text{with a remainder of} \quad 21 - (8 \times 2) = 5 \] \[ 21 = 8 \times 2 + 5 \] 2. **Now, divide 8 by the remainder 5:** \[ 8 \div 5 = 1 \quad \text{with a remainder of} \quad 8 - (5 \times 1) = 3 \] \[ 8 = 5 \times 1 + 3 \] 3. **Next, divide 5 by the remainder 3:** \[ 5 \div 3 = 1 \quad \text{with a remainder of} \quad 5 - (3 \times 1) = 2 \] \[ 5 = 3 \times 1 + 2 \] 4. **Then, divide 3 by the remainder 2:** \[ 3 \div 2 = 1 \quad \text{with a remainder of} \quad 3 - (2 \times 1) = 1 \] \[ 3 = 2 \times 1 + 1 \] 5. **Finally, divide 2 by the remainder 1:** \[ 2 \div 1 = 2 \quad \text{with a remainder of} \quad 2 - (1 \times 2) = 0 \] \[ 2 = 1 \times 2 + 0 \] **Conclusion:** When the remainder becomes **0**, the last non-zero remainder is the HCF. \[ \boxed{1} \] --- ### b) HCF of 108 and 270 **Step-by-Step Process:** 1. **Divide 270 by 108:** \[ 270 \div 108 = 2 \quad \text{with a remainder of} \quad 270 - (108 \times 2) = 54 \] \[ 270 = 108 \times 2 + 54 \] 2. **Now, divide 108 by the remainder 54:** \[ 108 \div 54 = 2 \quad \text{with a remainder of} \quad 108 - (54 \times 2) = 0 \] \[ 108 = 54 \times 2 + 0 \] **Conclusion:** When the remainder becomes **0**, the last non-zero remainder is the HCF. \[ \boxed{54} \] --- ### c) HCF of 416 and 8 **Step-by-Step Process:** 1. **Divide 416 by 8:** \[ 416 \div 8 = 52 \quad \text{with a remainder of} \quad 416 - (8 \times 52) = 0 \] \[ 416 = 8 \times 52 + 0 \] **Conclusion:** Since the remainder is already **0**, the divisor at this step is the HCF. \[ \boxed{8} \] --- ### d) HCF of 12 and 9 **Step-by-Step Process:** 1. **Divide 12 by 9:** \[ 12 \div 9 = 1 \quad \text{with a remainder of} \quad 12 - (9 \times 1) = 3 \] \[ 12 = 9 \times 1 + 3 \] 2. **Now, divide 9 by the remainder 3:** \[ 9 \div 3 = 3 \quad \text{with a remainder of} \quad 9 - (3 \times 3) = 0 \] \[ 9 = 3 \times 3 + 0 \] **Conclusion:** When the remainder becomes **0**, the last non-zero remainder is the HCF. \[ \boxed{3} \] --- **Summary of HCFs:** - **a) HCF of 21 and 8:** 1 - **b) HCF of 108 and 270:** 54 - **c) HCF of 416 and 8:** 8 - **d) HCF of 12 and 9:** 3

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the HCF (Highest Common Factor), we can use the method of prime factorization or the Euclidean algorithm! For 21 and 8, the prime factors of 21 are 3 and 7, and for 8, it’s just 2 and the only common factor is 1, so their HCF is 1. Moving to 108 and 270, the prime factors of 108 are 2², 3³, and for 270, it’s 2 × 3³ × 5. The common factors are 2¹ and 3³, hence the HCF is 18! For 416 and 8, the HCF is simply 8 since 8 is a factor of 416. Finally, for 12 and 9, their prime factors show that the HCF is 3. Need more practice? Dive into some simple math puzzles that incorporate HCF and enjoy the challenge! They not only sharpen your skills but also keep things lively and engaging. Try out some online maths games focused on HCF and discover creative ways to enhance your number-crunching abilities!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad