Given the \( x \)-intercepts of a parabola, write the equation of the line of symmetry. 20. \( x \)-intercepts: \( (-3,0) \) and \( (3,0) \) 21. \( x \)-intercepts: \( (-4,0) \) and \( (16,0) \) 22. \( x \)-intercepts: \( (-2,0) \) and \( (5,0) \) 23. \( x \)-intercepts: \( (-14,0) \) and \( (-3,0) \) 24. \( x \)-intercepts: \( (17,0) \) and \( (33,0) \) 25. \( x \)-intercepts: \( (-0.75,0) \) and \( (2.25,0) \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To find the equation of the line of symmetry of a parabola given the \( x \)-intercepts, you can simply average the \( x \)-coordinates of the intercepts. For instance, if the intercepts are \( (a, 0) \) and \( (b, 0) \), the line of symmetry is given by \( x = \frac{a + b}{2} \). For the provided intercepts: 20. The line of symmetry is \( x = \frac{-3+3}{2} = 0 \). 21. The line of symmetry is \( x = \frac{-4+16}{2} = 6 \). 22. The line of symmetry is \( x = \frac{-2 + 5}{2} = 1.5 \). 23. The line of symmetry is \( x = \frac{-14 + (-3)}{2} = -8.5 \). 24. The line of symmetry is \( x = \frac{17 + 33}{2} = 25 \). 25. The line of symmetry is \( x = \frac{-0.75 + 2.25}{2} = 0.75 \). So just remember: the line of symmetry is that perfect middle point that keeps the left and right sides of your parabola balanced!