Fractions Using a common donominator to order fractions First, rewrite \( \frac{9}{20} \) and \( \frac{12}{25} \) so that they have a common denominator. Then, use \( < \), \( = \), or \( > \) to order \( \frac{9}{20} \) and \( \frac{12}{25} \). \[ \frac{9}{20}=\frac{\square}{\square} \quad ; \quad \frac{12}{25}=\frac{\square}{\square} \] \( \square \) < \( >\square \) \( \square \) \( \frac{9}{20} \) \( \square \) \[ \frac{12}{25} \]
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To find a common denominator for \( \frac{9}{20} \) and \( \frac{12}{25} \), we first identify the least common multiple (LCM) of the denominators 20 and 25. The LCM is 100. Next, we convert each fraction: For \( \frac{9}{20} \): \[ \frac{9}{20} = \frac{9 \times 5}{20 \times 5} = \frac{45}{100} \] For \( \frac{12}{25} \): \[ \frac{12}{25} = \frac{12 \times 4}{25 \times 4} = \frac{48}{100} \] Now, we can order them: \[ \frac{9}{20} = \frac{45}{100} \quad ; \quad \frac{12}{25} = \frac{48}{100} \] Since \( 45 < 48 \), we have: \[ \frac{9}{20} < \frac{12}{25} \] So the answer is: \( \frac{9}{20} = \frac{45}{100} \quad ; \quad \frac{12}{25} = \frac{48}{100} \) \( 45 < 48 \) \( \frac{9}{20} < \frac{12}{25} \)