Pregunta
upstudy study bank question image url

Write a formula for an arithmetic sequence where the 4 th term is 21 and the 9 th term is 41 . Then, use the formula to determine the value of the 100th term. \( a_{n}=5+4 n \) and \( a_{100}=405 \) \( a_{n}=9+4 n \) and \( a_{100}=409 \) \( a_{n}=5+4 n \) and \( a_{100}=409 \) \( a_{n}=9+4 n \) and \( a_{100}=405 \)

Ask by Lang Delgado. in Japan
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The formula for the arithmetic sequence is \( a_n = 4n + 5 \), and the 100th term is 405.

Solución

To find the formula for the arithmetic sequence where the 4th term is 21 and the 9th term is 41, we can use the general formula for the \( n \)-th term of an arithmetic sequence: \[ a_n = a_1 + (n-1)d \] where \( a_1 \) is the first term and \( d \) is the common difference. ### Step 1: Set up the equations From the information given: - The 4th term \( a_4 = 21 \): \[ a_1 + 3d = 21 \quad \text{(1)} \] - The 9th term \( a_9 = 41 \): \[ a_1 + 8d = 41 \quad \text{(2)} \] ### Step 2: Solve the system of equations We can subtract equation (1) from equation (2) to eliminate \( a_1 \): \[ (a_1 + 8d) - (a_1 + 3d) = 41 - 21 \] \[ 5d = 20 \] \[ d = 4 \] Now, substitute \( d = 4 \) back into equation (1) to find \( a_1 \): \[ a_1 + 3(4) = 21 \] \[ a_1 + 12 = 21 \] \[ a_1 = 9 \] ### Step 3: Write the formula for the sequence Now that we have \( a_1 = 9 \) and \( d = 4 \), we can write the formula for the \( n \)-th term: \[ a_n = 9 + (n-1) \cdot 4 \] \[ a_n = 9 + 4n - 4 \] \[ a_n = 4n + 5 \] ### Step 4: Calculate the 100th term Now, we can find the 100th term \( a_{100} \): \[ a_{100} = 4(100) + 5 \] \[ a_{100} = 400 + 5 \] \[ a_{100} = 405 \] ### Conclusion The formula for the arithmetic sequence is: \[ a_n = 4n + 5 \] And the value of the 100th term is: \[ a_{100} = 405 \] Thus, the correct option is: \( a_{n}=5+4 n \) and \( a_{100}=405 \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the formula for the arithmetic sequence, we can use the information given about the 4th and 9th terms. The nth term of an arithmetic sequence can be written as \( a_n = a + (n-1)d \), where \( a \) is the first term and \( d \) is the common difference. From the 4th term: \[ a_4 = a + 3d = 21 \] From the 9th term: \[ a_9 = a + 8d = 41 \] Now, we can set up a system of equations and solve for \( a \) and \( d \). Subtract the first equation from the second: \[ (a + 8d) - (a + 3d) = 41 - 21 \\ 5d = 20 \\ d = 4 \] Substituting \( d \) back into the first equation: \[ a + 3(4) = 21 \\ a + 12 = 21 \\ a = 9 \] So, the formula for the arithmetic sequence is \( a_n = 9 + 4(n - 1) \). Now, to find the 100th term: \[ a_{100} = 9 + 4(100 - 1) \\ a_{100} = 9 + 4(99) = 9 + 396 = 405 \] The correct answer is \( a_{n}=9+4 n \) and \( a_{100}=405 \). Now, let’s add some fun facts! The beauty of arithmetic sequences lies in their predictable pattern. Just like counting the steps on a staircase, each step brings you to a higher number with the same interval—perfect for planning everything from your next hiking trail to how far along you are in a book! If you’re ever stuck calculating terms in a sequence, remember to always jot down the first few terms. This can help you identify the pattern, especially when facing tricky word problems or puzzles! Plus, it’s like adding breadcrumbs to your math journey—no getting lost allowed!

Latest Arithmetic Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad