Pregunta
upstudy study bank question image url

How much would you need to deposit in an account now in order to have \( \$ 4000 \) in the account in 10 years? Assume the account earns \( 5 \% \) interest compounded monthly. Round to the nearest cent. Question Help: Video 1 Video 2 Post to forum Submit Question

Ask by Ortega Nguyen. in the United States
Feb 13,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

You need to deposit approximately \$2,428.03 now to have \$4,000 in 10 years with 5% interest compounded monthly.

Solución

To figure out how much you need to deposit now, use the present value formula with compound interest:   A = P × (1 + r/m)^(m*t) Here, A is the future amount, P is the present value (what we’re solving for), r is the annual interest rate in decimal form (0.05 for 5%), m is the number of compounding periods per year (12 for monthly), and t is the time in years (10). Rearrange the formula to solve for P:   P = A / (1 + r/m)^(m*t) Substitute the given values:   P = 4000 / (1 + 0.05/12)^(12*10) Calculate 0.05/12:   0.05/12 ≈ 0.00416667 Then 1 + 0.00416667 = 1.00416667. Raise this to the power of 120 (because 12*10 = 120):   (1.00416667)^120 ≈ 1.64701 Now, divide the future amount by this factor:   P ≈ 4000 / 1.64701 ≈ 2428.03 So, you would need to deposit about $2,428.03 now in order to have $4,000 in 10 years when interest is compounded monthly at a 5% annual rate.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To figure out how much you need to deposit now to end up with $4000 in 10 years, you can use the formula for present value with compound interest: \[ PV = \frac{FV}{(1 + \frac{r}{n})^{nt}} \] In this case, \( FV = 4000 \), \( r = 0.05 \), \( n = 12 \), and \( t = 10 \). Plugging in these values gives you the amount you need to deposit today. Let’s do the calculation: \[ PV = \frac{4000}{(1 + \frac{0.05}{12})^{12 \times 10}} \approx \frac{4000}{(1.004167)^{120}} \approx \frac{4000}{1.647009} \approx 2428.00 \] You would need to deposit approximately **$2,428.00** now! Understanding compound interest is a game changer! Before the concept of compound interest was popularized, people typically thought of interest as a static figure, leading many to miss out on the benefits of letting their money grow exponentially over time. Today, compound interest is a vital principle in both personal finance and investment strategies, allowing for wealth accumulation that feels like magic! If you want to dive deeper into the world of personal finance, consider reading “The Total Money Makeover” by Dave Ramsey for practical advice on savings and investment strategies. Another excellent book is “The Millionaire Next Door” by Thomas J. Stanley, which reveals fascinating insights into the habits of wealthy individuals—most of whom didn’t become rich through flashy spending but smart, consistent management of their finances!

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad