Pregunta
upstudy study bank question image url

A graphing calculator is recommended. Compare the functions \( f(x)=x^{10} \) and \( g(x)=e^{x} \) by graphing both functions in several viewing rectangles. When does the graph of \( g \) finally surpass the graph of \( f ? \) (Round your answer to one decimal place.) \( x=1.1 \)

Ask by Horton Kirk. in the United States
Feb 13,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

At \( x = 1.1 \), the graph of \( g(x) = e^{x} \) surpasses the graph of \( f(x) = x^{10} \).

Solución

To compare the functions \( f(x) = x^{10} \) and \( g(x) = e^{x} \) by graphing both functions in several viewing rectangles, we can use a graphing calculator. To find when the graph of \( g \) finally surpasses the graph of \( f \), we need to find the point where \( g(x) > f(x) \). Given that \( x = 1.1 \), we can substitute this value into both functions to determine when the graph of \( g \) surpasses the graph of \( f \). Let's calculate the values of \( f(1.1) \) and \( g(1.1) \) to determine when the graph of \( g \) surpasses the graph of \( f \). Evaluate the expression by following steps: - step0: Evaluate: \(x^{10}\) - step1: Substitute: \(1.1^{10}\) - step2: Convert the expressions: \(\left(\frac{11}{10}\right)^{10}\) - step3: Evaluate the power: \(\frac{11^{10}}{10^{10}}\) Substitute \( x = 1.1 \) into the function \( f(x) = x^{10} \) to find \( f(1.1) \): \[ f(1.1) = \frac{11^{10}}{10^{10}} \approx 2.593742 \] Now, let's calculate the value of \( g(1.1) \) by substituting \( x = 1.1 \) into the function \( g(x) = e^{x} \). Evaluate the expression by following steps: - step0: Evaluate: \(e^{x}\) - step1: Substitute: \(e^{1.1}\) - step2: Convert the expressions: \(e^{\frac{11}{10}}\) - step3: Transform the expression: \(\sqrt[10]{e^{11}}\) - step4: Rewrite the exponent: \(\sqrt[10]{e^{10+1}}\) - step5: Expand the expression: \(\sqrt[10]{e^{10}\times e}\) - step6: Use the properties of radicals: \(\sqrt[10]{e^{10}}\times \sqrt[10]{e}\) - step7: Simplify the root: \(e\sqrt[10]{e}\) Substitute \( x = 1.1 \) into the function \( g(x) = e^{x} \) to find \( g(1.1) \): \[ g(1.1) \approx 3.004166 \] Now, we can compare the values of \( f(1.1) \) and \( g(1.1) \) to determine when the graph of \( g \) surpasses the graph of \( f \) at \( x = 1.1 \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

The behavior of the functions \( f(x)=x^{10} \) and \( g(x)=e^{x} \) is fascinating! Initially, for small values of \( x \), \( f(x) \) grows rapidly due to the power of 10, dominating \( g(x) \). However, as \( x \) increases further, particularly around \( x=1.1 \), the exponential function \( g(x) \) begins to outstrip \( f(x) \). Beyond this point, \( g(x) \) not only surpasses but continues to grow faster than \( f(x) \) for larger \( x \). For anyone interested in diving deeper, exploring the concept of limits could be incredibly enlightening. You could investigate the points where the growth rates of different functions change using derivatives. Additionally, examining the graphs of both functions using a graphing calculator will show you the crossover point and allow you to visualize this beautiful intersection of polynomial vs. exponential growth!

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad