Write an expression to find the difference in the maximum area and minimum area efl a thfves regulation soccerfield. Then, evaluate your expression.
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To find the difference in the maximum area and minimum area of a regulation soccer field, we need to know the dimensions. A standard soccer field can vary in size, but the length ranges from 100 to 110 meters and the width ranges from 64 to 75 meters. The maximum area \( A_{\text{max}} \) is calculated using the largest allowed dimensions, while the minimum area \( A_{\text{min}} \) uses the smallest allowed ones. The expression for the difference in area can be formulated as follows: \[ \text{Difference} = A_{\text{max}} - A_{\text{min}} \] Where: - \( A_{\text{max}} = \text{length}_{\text{max}} \times \text{width}_{\text{max}} = 110 \, \text{m} \times 75 \, \text{m} = 8250 \, \text{m}^2 \) - \( A_{\text{min}} = \text{length}_{\text{min}} \times \text{width}_{\text{min}} = 100 \, \text{m} \times 64 \, \text{m} = 6400 \, \text{m}^2 \) Now, calculating the difference: \[ \text{Difference} = 8250 \, \text{m}^2 - 6400 \, \text{m}^2 = 1850 \, \text{m}^2 \] So, the difference in the maximum and minimum area of a regulation soccer field is \( 1850 \, \text{m}^2 \).