Solve for \( x \) : \[ \frac{3}{(x+2)(x-1)}=-3+\frac{1}{x-1} \] If there is more than one solution, separate them with commas. If there is no solution, click on "No solution". \( x=\frac{-1+\sqrt{34}}{3}, \frac{-1-\sqrt{34}}{3} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
The given equation is \[ \frac{3}{(x+2)(x-1)} = -3 + \frac{1}{x-1}. \] To solve for \( x \), first, we can simplify the right-hand side. Getting a common denominator gives us \[ -3 + \frac{1}{x-1} = \frac{-3(x-1) + 1}{x-1} = \frac{-3x + 3 + 1}{x-1} = \frac{-3x + 4}{x-1}. \] Now, we can rewrite the equation as: \[ \frac{3}{(x+2)(x-1)} = \frac{-3x + 4}{x-1}. \] Cross-multiplying yields: \[ 3(x-1) = (x+2)(-3x + 4). \] Expanding both sides gives: \[ 3x - 3 = (-3x^2 + 4x - 6x - 8), \] which simplifies to: \[ 3x - 3 = -3x^2 - 2x - 8. \] Rearranging everything to one side results in: \[ 3x^2 + 5x + 5 = 0. \] Now, we can use the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), where \( a = 3, b = 5, c = 5 \): \[ x = \frac{-5 \pm \sqrt{5^2 - 4 \cdot 3 \cdot 5}}{2 \cdot 3} = \frac{-5 \pm \sqrt{25 - 60}}{6} = \frac{-5 \pm \sqrt{-35}}{6} = \frac{-5 \pm i\sqrt{35}}{6}. \] Thus, the solutions are: \[ x = \frac{-5 + i\sqrt{35}}{6}, \, \frac{-5 - i\sqrt{35}}{6}. \]