Pregunta
upstudy study bank question image url

Solve for \( x \) : \[ \frac{3}{(x+2)(x-1)}=-3+\frac{1}{x-1} \] If there is more than one solution, separate them with commas. If there is no solution, click on "No solution". \( x=\frac{-1+\sqrt{34}}{3}, \frac{-1-\sqrt{34}}{3} \)

Ask by Bolton Estrada. in the United Arab Emirates
Jan 21,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

There is no solution.

Solución

Solve the equation by following steps: - step0: Solve for \(x\): \(\frac{3}{\left(x+2\right)\left(x-1\right)}=-3+\frac{1}{x-1}\) - step1: Find the domain: \(\frac{3}{\left(x+2\right)\left(x-1\right)}=-3+\frac{1}{x-1},x \in \left(-\infty,-2\right)\cup \left(-2,1\right)\cup \left(1,+\infty\right)\) - step2: Multiply both sides of the equation by LCD: \(\frac{3}{\left(x+2\right)\left(x-1\right)}\times \left(x-1\right)\left(x+2\right)=\left(-3+\frac{1}{x-1}\right)\left(x-1\right)\left(x+2\right)\) - step3: Simplify the equation: \(3=-3x^{2}-2x+8\) - step4: Swap the sides: \(-3x^{2}-2x+8=3\) - step5: Move the expression to the left side: \(-3x^{2}-2x+8-3=0\) - step6: Subtract the numbers: \(-3x^{2}-2x+5=0\) - step7: Factor the expression: \(\left(-x+1\right)\left(3x+5\right)=0\) - step8: Separate into possible cases: \(\begin{align}&-x+1=0\\&3x+5=0\end{align}\) - step9: Solve the equation: \(\begin{align}&x=1\\&x=-\frac{5}{3}\end{align}\) - step10: Check if the solution is in the defined range: \(\begin{align}&x=1\\&x=-\frac{5}{3}\end{align},x \in \left(-\infty,-2\right)\cup \left(-2,1\right)\cup \left(1,+\infty\right)\) - step11: Find the intersection: \(x=-\frac{5}{3}\) To solve the equation \[ \frac{3}{(x+2)(x-1)} = -3 + \frac{1}{x-1}, \] we can start by simplifying the right side. First, we can rewrite \(-3\) with a common denominator of \(x-1\): \[ -3 = \frac{-3(x-1)}{x-1} = \frac{-3x + 3}{x-1}. \] Now, substituting this back into the equation gives us: \[ \frac{3}{(x+2)(x-1)} = \frac{-3x + 3 + 1}{x-1} = \frac{-3x + 4}{x-1}. \] Next, we can cross-multiply to eliminate the fractions: \[ 3(x-1) = (x+2)(-3x + 4). \] Expanding both sides: \[ 3x - 3 = -3x^2 + 4x - 6x - 8. \] This simplifies to: \[ 3x - 3 = -3x^2 - 2x - 8. \] Rearranging all terms to one side gives us: \[ 3x + 3x^2 + 2x - 3 + 8 = 0, \] which simplifies to: \[ 3x^2 + 5x + 5 = 0. \] Now, we can use the quadratic formula to find the values of \(x\): \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-5 \pm \sqrt{5^2 - 4 \cdot 3 \cdot 5}}{2 \cdot 3} = \frac{-5 \pm \sqrt{25 - 60}}{6} = \frac{-5 \pm \sqrt{-35}}{6}. \] Since the discriminant is negative, this indicates that there are no real solutions. Thus, the final answer is: **No solution.**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

The given equation is \[ \frac{3}{(x+2)(x-1)} = -3 + \frac{1}{x-1}. \] To solve for \( x \), first, we can simplify the right-hand side. Getting a common denominator gives us \[ -3 + \frac{1}{x-1} = \frac{-3(x-1) + 1}{x-1} = \frac{-3x + 3 + 1}{x-1} = \frac{-3x + 4}{x-1}. \] Now, we can rewrite the equation as: \[ \frac{3}{(x+2)(x-1)} = \frac{-3x + 4}{x-1}. \] Cross-multiplying yields: \[ 3(x-1) = (x+2)(-3x + 4). \] Expanding both sides gives: \[ 3x - 3 = (-3x^2 + 4x - 6x - 8), \] which simplifies to: \[ 3x - 3 = -3x^2 - 2x - 8. \] Rearranging everything to one side results in: \[ 3x^2 + 5x + 5 = 0. \] Now, we can use the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), where \( a = 3, b = 5, c = 5 \): \[ x = \frac{-5 \pm \sqrt{5^2 - 4 \cdot 3 \cdot 5}}{2 \cdot 3} = \frac{-5 \pm \sqrt{25 - 60}}{6} = \frac{-5 \pm \sqrt{-35}}{6} = \frac{-5 \pm i\sqrt{35}}{6}. \] Thus, the solutions are: \[ x = \frac{-5 + i\sqrt{35}}{6}, \, \frac{-5 - i\sqrt{35}}{6}. \]

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad