Pregunta
upstudy study bank question image url

(a) \( 4 x+y=22 \)

Ask by Schmidt Norris. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( y = -4x + 22 \)

Solución

Certainly! Let's analyze the linear equation you've provided: \[ 4x + y = 22 \] ### (a) Solving for \( y \) in Terms of \( x \) To better understand the equation, we can solve for \( y \) in terms of \( x \). This form is often useful for graphing the equation or understanding the relationship between the variables. \[ \begin{align*} 4x + y &= 22 \\ y &= 22 - 4x \end{align*} \] So, the equation can be rewritten as: \[ y = -4x + 22 \] ### Interpretation 1. **Slope-Intercept Form:** The equation \( y = -4x + 22 \) is in the slope-intercept form \( y = mx + b \), where: - **Slope (\( m \))**: \( -4 \) This indicates that for every unit increase in \( x \), \( y \) decreases by 4 units. - **Y-intercept (\( b \))**: \( 22 \) This is the point where the line crosses the y-axis (i.e., when \( x = 0 \), \( y = 22 \)). 2. **Graphing the Equation:** If you were to graph this equation: - Start at the y-intercept \( (0, 22) \). - From there, use the slope to find another point. Since the slope is \( -4 \), you can go down 4 units and right 1 unit to reach \( (1, 18) \). - Draw a straight line through these points. 3. **Solution Set:** This equation represents a straight line with infinitely many solutions. Each solution is a pair \( (x, y) \) that satisfies the equation. For example: - If \( x = 2 \), then \( y = 22 - 4(2) = 14 \), so \( (2, 14) \) is a solution. - If \( x = -3 \), then \( y = 22 - 4(-3) = 34 \), so \( (-3, 34) \) is a solution. ### Summary - **Equation in Slope-Intercept Form:** \( y = -4x + 22 \) - **Slope:** \( -4 \) - **Y-intercept:** \( 22 \) - **Graph:** A straight line decreasing from left to right, crossing the y-axis at \( (0, 22) \). If you have more parts to this problem or need further assistance with different aspects, feel free to provide additional details!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

Let's dive into some fun facts about linear equations! Did you know that the concept of linear equations dates back to ancient civilizations? Babylonians were among the first to solve linear equations around 2000 BC! They used geometric concepts and had remarkable skills in managing these problems that laid the groundwork for modern algebra. Now, onto practical applications! Linear equations are super useful in everyday life. For example, if you're planning a party and need to buy food and drinks, you can set up a linear equation to determine how much of each item you can afford based on your budget. By knowing the cost per item, you can calculate the perfect amount to buy while staying within your limits!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad