Use algebra tiles to find \( \left(-9 x^{2}-10 x-8\right)-\left(-5 x^{2}-4 x-6\right) \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To solve the expression \( \left(-9 x^{2}-10 x-8\right)-\left(-5 x^{2}-4 x-6\right) \) using algebra tiles, start by translating the expression into algebra tiles. We'll have negative tiles for the terms in the first group and positive tiles for the terms in the second. 1. **For the first polynomial** (\(-9x^{2} - 10x - 8\)): - Use 9 negative \(x^{2}\) tiles, 10 negative \(x\) tiles, and 8 negative unit tiles. 2. **For the second polynomial** (\(-5x^{2} - 4x - 6\)): - Since it’s being subtracted, we will actually add the positive equivalents of these tiles: 5 positive \(x^{2}\) tiles, 4 positive \(x\) tiles, and 6 positive unit tiles. Now, combine the groups: - Combine the \(x^{2}\) tiles: \( -9 + 5 = -4 \) (so we'll have 4 negative \(x^{2}\) tiles) - Combine the \(x\) tiles: \( -10 + 4 = -6 \) (so we’ll have 6 negative \(x\) tiles) - Combine the unit tiles: \( -8 + 6 = -2 \) (so we’ll have 2 negative unit tiles) Putting all of this together, we find: \[ -4x^{2} - 6x - 2 \] So, the final answer is \( -4x^{2} - 6x - 2 \).