Pregunta
Solve the equation \( \frac{10}{x}=\frac{-4}{3 x}+6 \)
Ask by Medina Bright. in the United States
Jan 24,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\( x = \frac{17}{9} \)
Solución
To solve the equation:
\[
\frac{10}{x} = \frac{-4}{3x} + 6
\]
follow these steps:
### Step 1: Eliminate the Fractions
First, identify the least common denominator (LCD) to eliminate the fractions. The denominators here are \( x \) and \( 3x \). The LCD is \( 3x \).
Multiply **both sides** of the equation by \( 3x \):
\[
3x \cdot \frac{10}{x} = 3x \cdot \left( \frac{-4}{3x} \right) + 3x \cdot 6
\]
### Step 2: Simplify Each Term
Let's simplify each term after multiplication:
1. **First Term:**
\[
3x \cdot \frac{10}{x} = 30
\]
(The \( x \) cancels out.)
2. **Second Term:**
\[
3x \cdot \frac{-4}{3x} = -4
\]
(The \( 3x \) cancels out.)
3. **Third Term:**
\[
3x \cdot 6 = 18x
\]
After simplification, the equation becomes:
\[
30 = -4 + 18x
\]
### Step 3: Solve for \( x \)
Now, isolate \( x \):
1. **Add 4** to both sides to get rid of the constant term on the right:
\[
30 + 4 = 18x
\]
\[
34 = 18x
\]
2. **Divide both sides** by 18 to solve for \( x \):
\[
x = \frac{34}{18}
\]
3. **Simplify the fraction** by dividing numerator and denominator by 2:
\[
x = \frac{17}{9}
\]
### Final Answer
\[
x = \frac{17}{9}
\]
Alternatively, as a decimal:
\[
x \approx 1.89
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Extra Insights
To solve the equation \( \frac{10}{x} = \frac{-4}{3x} + 6 \), we first eliminate the fractions by multiplying through by \( 3x \) (assuming \( x \neq 0 \)): \[ 3x \cdot \frac{10}{x} = 3x \cdot \frac{-4}{3x} + 3x \cdot 6. \] This simplifies to: \[ 30 = -4 + 18x. \] Next, we solve for \( x \) by isolating \( x \): \[ 30 + 4 = 18x \implies 34 = 18x \implies x = \frac{34}{18} = \frac{17}{9}. \] Thus, the solution to the equation is: \[ x = \frac{17}{9}. \]
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium