Pregunta
upstudy study bank question image url

\( \$ 800 \) were deposited into an account wit a \( 9.5 \% \) interest rate, compounded continuously. How many years was it in the bank if the current amount is \( \$ 6400 \) ? \[ t=[?] \text { years } \]

Ask by Mcfarlane Jimenez. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The time \( t \) in years is approximately 21.89 years.

Solución

To solve this problem, we can use the formula for continuous compounding of interest: \[ A = P e^{rt} \] where: - \( A \) is the current amount in the account, - \( P \) is the initial deposit, - \( r \) is the interest rate, - \( t \) is the time in years. Given: - Initial deposit \( P = \$800 \), - Interest rate \( r = 9.5\% = 0.095 \), - Current amount \( A = \$6400 \). We need to find the time \( t \) in years. Substitute the given values into the formula: \[ 6400 = 800 e^{0.095t} \] Now, we can solve for \( t \) using the formula for continuous compounding of interest. Solve the equation by following steps: - step0: Solve for \(t\): \(6400=800e^{0.095t}\) - step1: Convert the expressions: \(6400=800e^{\frac{19}{200}t}\) - step2: Swap the sides: \(800e^{\frac{19}{200}t}=6400\) - step3: Divide both sides: \(\frac{800e^{\frac{19}{200}t}}{800}=\frac{6400}{800}\) - step4: Divide the numbers: \(e^{\frac{19}{200}t}=8\) - step5: Take the logarithm of both sides: \(\ln{\left(e^{\frac{19}{200}t}\right)}=\ln{\left(8\right)}\) - step6: Evaluate the logarithm: \(\frac{19}{200}t=\ln{\left(8\right)}\) - step7: Multiply by the reciprocal: \(\frac{19}{200}t\times \frac{200}{19}=\ln{\left(8\right)}\times \frac{200}{19}\) - step8: Multiply: \(t=\frac{200\ln{\left(8\right)}}{19}\) - step9: Simplify: \(t=\frac{600\ln{\left(2\right)}}{19}\) The time \( t \) in years is given by the formula: \[ t = \frac{600 \ln(2)}{19} \] Substitute the value of \( \ln(2) \) to find the numerical value of \( t \). Calculate the value by following steps: - step0: Calculate: \(\frac{600\ln{\left(2\right)}}{19}\) The time \( t \) in years is approximately 21.89 years.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find how many years the money was in the bank, we can use the formula for continuous compounding, which is: \[ A = Pe^{rt} \] where: - \( A \) is the amount of money accumulated after time \( t \), - \( P \) is the principal amount (the initial deposit), - \( r \) is the annual interest rate (decimal), - \( t \) is the number of years the money is invested or borrowed for, - \( e \) is the base of the natural logarithm (approximately equal to 2.71828). In this problem: - \( A = 6400 \) - \( P = 800 \) - \( r = 0.095 \) Plugging in these values, we have: \[ 6400 = 800e^{0.095t} \] Now, we can solve for \( t \): 1. Divide both sides by 800: \[ 8 = e^{0.095t} \] 2. Take the natural logarithm of both sides: \[ \ln(8) = 0.095t \] 3. Finally, solve for \( t \): \[ t = \frac{\ln(8)}{0.095} \] Now calculating this: \[ \ln(8) \approx 2.0794 \] \[ t \approx \frac{2.0794}{0.095} \approx 21.88 \] Thus, the time \( t \) is approximately \( 22 \) years. So, \( t \approx 22 \text{ years} \).

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad