Write in terms of \( i \). Simplify your answer as much as possible \[ \sqrt{-75} \]
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To simplify \(\sqrt{-75}\), we start by recognizing that we can write it in terms of \(i\), where \(i = \sqrt{-1}\). We can express \(-75\) as \(-1 \times 75\). Therefore, we have: \[ \sqrt{-75} = \sqrt{-1 \times 75} = \sqrt{-1} \times \sqrt{75} = i \sqrt{75} \] Next, we simplify \(\sqrt{75}\). We can factor \(75\) into \(25 \times 3\): \[ \sqrt{75} = \sqrt{25 \times 3} = \sqrt{25} \times \sqrt{3} = 5\sqrt{3} \] Now, substitute back into the expression: \[ \sqrt{-75} = i \cdot 5\sqrt{3} = 5i\sqrt{3} \] Thus, the simplified form of \(\sqrt{-75}\) is: \[ 5i\sqrt{3} \]