Find the product and write the result in standard form. \( (8-2 i)(-3-6 i) \) \( (8-2 i)(-3-6 i)=\square \) (Simplify your answer. Type your answer in the form \( a+b i \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To find the product \( (8-2i)(-3-6i) \), we can use the distributive property (also known as the FOIL method for binomials). First, let's distribute: 1. \( 8 \cdot (-3) = -24 \) 2. \( 8 \cdot (-6i) = -48i \) 3. \( -2i \cdot (-3) = 6i \) 4. \( -2i \cdot (-6i) = 12i^2 \) Now we combine these results: \[ -24 - 48i + 6i + 12i^2 \] Recall that \( i^2 = -1 \). Therefore, \( 12i^2 = 12(-1) = -12 \). Now substitute that back in: \[ -24 - 48i + 6i - 12 = -36 - 42i \] Thus, the product simplifies to: \[ (8-2i)(-3-6i) = -36 - 42i \] So, the final result in the form \( a + bi \) is: \[ -36 - 42i \]