Pregunta
upstudy study bank question image url

2. Andre and Lin are asked to write an equation for \( S \) that isn't recursive. Andre writes \( S(n)=3^{n} \) for \( n \geq 0 \) while Lin writes \( S(n)=3^{n-1} \) for \( n \geq 1 \). Whose equation do you think is correct? A I think Andre's equation is correct. B I think Lin's equation is correct. C I think both equations are correct. D I think neither is correct. Explain your reasoning!

Ask by Stewart Olson. in the United States
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Both Andre's and Lin's equations are correct because they both produce the same sequence of values starting from \( n = 1 \).

Solución

To determine whose equation for \( S \) is correct, let's analyze both equations provided by Andre and Lin. 1. **Andre's Equation:** \[ S(n) = 3^n \quad \text{for } n \geq 0 \] - This equation starts at \( n = 0 \). - For \( n = 0 \), \( S(0) = 3^0 = 1 \). - For \( n = 1 \), \( S(1) = 3^1 = 3 \). - For \( n = 2 \), \( S(2) = 3^2 = 9 \). - The values of \( S(n) \) are \( 1, 3, 9, 27, \ldots \) which is a geometric sequence with a common ratio of 3. 2. **Lin's Equation:** \[ S(n) = 3^{n-1} \quad \text{for } n \geq 1 \] - This equation starts at \( n = 1 \). - For \( n = 1 \), \( S(1) = 3^{1-1} = 3^0 = 1 \). - For \( n = 2 \), \( S(2) = 3^{2-1} = 3^1 = 3 \). - For \( n = 3 \), \( S(3) = 3^{3-1} = 3^2 = 9 \). - The values of \( S(n) \) are \( 1, 3, 9, 27, \ldots \) which is also a geometric sequence with a common ratio of 3. ### Comparison: - Both equations yield the same sequence of values starting from \( n = 1 \) for Lin's equation and from \( n = 0 \) for Andre's equation. - Andre's equation provides a value for \( n = 0 \), while Lin's equation does not define \( S(0) \). ### Conclusion: - Since both equations produce the same values for \( n \geq 1 \) and Andre's equation includes \( n = 0 \) with a defined value, we can conclude that both equations are correct, but Andre's is more comprehensive as it covers the case for \( n = 0 \). Thus, the correct answer is: **C I think both equations are correct.**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

Let’s evaluate both equations based on their definitions: Andre’s equation, \( S(n) = 3^n \), begins with \( n = 0 \). Thus, for \( n = 0 \), \( S(0) = 3^0 = 1 \). For \( n = 1 \), \( S(1) = 3^1 = 3 \), and it continues in this manner. On the other hand, Lin’s equation \( S(n) = 3^{n-1} \) starts from \( n = 1 \). If we plug in \( n = 1 \), we get \( S(1) = 3^{0} = 1 \) and for \( n = 2 \), \( S(2) = 3^{1} = 3 \). Thus, Lin's equation does not give a value for \( S(0) \). In this case, both equations are valid within their stated domains, but they yield different outputs for \( n = 0 \). Since Andre's equation is valid for \( n \geq 0 \) and inclusive of all natural numbers starting from zero, the correct answer leans towards A: I think Andre's equation is correct.

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad