Pregunta
1.3 Represent the series \( \frac{2}{3}+\frac{3}{4}+\frac{4}{5}+\frac{5}{6}+\cdots+\frac{10}{11} \) using sigma notation.
Ask by Jimenez Wells. in South Africa
Feb 03,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\[
\sum_{k=2}^{10} \frac{k}{k+1}
\]
Solución
To represent the series \( \frac{2}{3} + \frac{3}{4} + \frac{4}{5} + \frac{5}{6} + \cdots + \frac{10}{11} \) using sigma notation, follow these steps:
1. **Identify the Pattern:**
- **Numerators:** Start at 2 and increase by 1 each term (2, 3, 4, ..., 10).
- **Denominators:** Start at 3 and increase by 1 each term (3, 4, 5, ..., 11).
2. **Express the General Term:**
Each term can be written as \( \frac{k}{k+1} \), where \( k \) starts at 2 and ends at 10.
3. **Write the Sigma Notation:**
\[
\sum_{k=2}^{10} \frac{k}{k+1}
\]
**Final Answer:**
\[
\sum_{k=2}^{10} \frac{k}{k+1}
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Beyond the Answer
The series \( \frac{2}{3}+\frac{3}{4}+\frac{4}{5}+\frac{5}{6}+\cdots+\frac{10}{11} \) can be expressed in sigma notation by identifying the pattern in the terms. Each term has the form \( \frac{n+1}{n+2} \) for \( n \) starting from 1 up to 9. Thus, we can represent the series as: \[ \sum_{n=1}^{9} \frac{n+1}{n+2} \]
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium