Pregunta
upstudy study bank question image url

Write an expression for this arithmetic sequence: \[ 16.5,19,21.5,24,26.5 \ldots \] \( \begin{array}{l}a_{n}=14+2.5(n-1) \\ a_{n}=16.5+2.5(n-1) \\ a_{n}=2.5 n+16.5 \\ a_{n}=19+2.5 n\end{array} \)

Ask by Chadwick Weston. in Japan
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The correct expression for the arithmetic sequence is: \[ a_{n} = 16.5 + 2.5(n - 1) \]

Solución

To find an expression for the given arithmetic sequence: \[ 16.5, \, 19, \, 21.5, \, 24, \, 26.5, \ldots \] **Step 1: Identify the First Term and Common Difference** - **First term (\(a_1\))**: \(16.5\) - **Common difference (\(d\))**: \(19 - 16.5 = 2.5\) **Step 2: Use the General Formula for an Arithmetic Sequence** The general formula for the \(n\)th term of an arithmetic sequence is: \[ a_n = a_1 + d(n - 1) \] Substituting the known values: \[ a_n = 16.5 + 2.5(n - 1) \] **Step 3: Verify Against the Given Options** Let's check the provided options to see which one matches our derived formula: 1. \(a_n = 14 + 2.5(n - 1)\) - For \(n = 1\): \(14 + 2.5(0) = 14\) (Incorrect, since \(a_1 = 16.5\)) 2. \(a_n = 16.5 + 2.5(n - 1)\) - For \(n = 1\): \(16.5 + 2.5(0) = 16.5\) (Correct) - For \(n = 2\): \(16.5 + 2.5(1) = 19\) (Correct) 3. \(a_n = 2.5n + 16.5\) - For \(n = 1\): \(2.5(1) + 16.5 = 19\) (Incorrect, since \(a_1 = 16.5\)) 4. \(a_n = 19 + 2.5n\) - For \(n = 1\): \(19 + 2.5(1) = 21.5\) (Incorrect, since \(a_1 = 16.5\)) **Conclusion** The correct expression for the arithmetic sequence is: \[ a_n = 16.5 + 2.5(n - 1) \] **Answer:** \[ a_{n}=16.5+2.5(n-1) \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the expression for the given arithmetic sequence, we first look at the first term and the common difference. The first term \( a_1 \) is 16.5, and the common difference \( d \) between consecutive terms is 2.5. Thus, the general formula for the nth term of an arithmetic sequence can be expressed as: \[ a_n = a_1 + (n-1) d \] Substituting in the values, we get: \[ a_n = 16.5 + (n-1) \cdot 2.5 \] This simplifies to: \[ a_n = 16.5 + 2.5n - 2.5 = 2.5n + 14 \] So, the correct expression that describes this sequence is: \[ a_n = 2.5n + 14 \] The answer can be found by following this logical progression effectively! As a quick check, if you plug in \( n=1 \), \( a_1 = 2.5(1) + 14 = 16.5 \), which matches the first term. How cool is that?

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad