Given the \( x \)-intercepts of a parabola, write the equation of the line of symmetry. 20. \( x \)-intercepts: \( (-3,0) \) and \( (3,0) \) 21. \( x \)-intercepts: \( (-4,0) \) and \( (16,0) \) 22. \( x \)-intercepts: \( (-2,0) \) and \( (5,0) \) 23. \( x \)-intercepts: \( (-14,0) \) and \( (-3,0) \) 24. \( x \)-intercepts: \( (17,0) \) and \( (33,0) \) 25. \( x \)-intercepts: \( (-0.75,0) \) and \( (2.25,0) \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To find the line of symmetry for a parabola given its \( x \)-intercepts, simply take the average of the \( x \)-coordinates of the intercepts. The line of symmetry is given by the equation \( x = \frac{x_1 + x_2}{2} \). For the first pair, \( (-3, 0) \) and \( (3, 0) \): The line of symmetry is \( x = \frac{-3 + 3}{2} = 0 \). For the second pair, \( (-4, 0) \) and \( (16, 0) \): The line of symmetry is \( x = \frac{-4 + 16}{2} = 6 \). For the third pair, \( (-2, 0) \) and \( (5, 0) \): The line of symmetry is \( x = \frac{-2 + 5}{2} = 1.5 \). For the fourth pair, \( (-14, 0) \) and \( (-3, 0) \): The line of symmetry is \( x = \frac{-14 + (-3)}{2} = -8.5 \). For the fifth pair, \( (17, 0) \) and \( (33, 0) \): The line of symmetry is \( x = \frac{17 + 33}{2} = 25 \). For the sixth pair, \( (-0.75, 0) \) and \( (2.25, 0) \): The line of symmetry is \( x = \frac{-0.75 + 2.25}{2} = 0.75 \).