3. \( f(x)=\frac{x^{2}-3 x+5}{x+1} \) હोય, तो \( f(3), f(-2), f\left(\frac{1}{2}\right) \) शोध
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
ચાલો, આપણે દરેક કિસ્સામાં \( f(x) \) ની કિંમત ચૂંટીએ! પ્રથમ, \( f(3) \): \[ f(3) = \frac{3^2 - 3 \cdot 3 + 5}{3 + 1} = \frac{9 - 9 + 5}{4} = \frac{5}{4} \] બીજું, \( f(-2) \): \[ f(-2) = \frac{(-2)^2 - 3 \cdot (-2) + 5}{-2 + 1} = \frac{4 + 6 + 5}{-1} = \frac{15}{-1} = -15 \] અને છેલ્લા, \( f\left(\frac{1}{2}\right) \): \[ f\left(\frac{1}{2}\right) = \frac{\left(\frac{1}{2}\right)^2 - 3 \cdot \frac{1}{2} + 5}{\frac{1}{2} + 1} = \frac{\frac{1}{4} - \frac{3}{2} + 5}{\frac{3}{2}} = \frac{\frac{1}{4} - \frac{6}{4} + \frac{20}{4}}{\frac{3}{2}} = \frac{\frac{15}{4}}{\frac{3}{2}} = \frac{15 \cdot 2}{4 \cdot 3} = \frac{30}{12} = \frac{5}{2} \] તેથી, \( f(3) = \frac{5}{4} \), \( f(-2) = -15 \), અને \( f\left(\frac{1}{2}\right) = \frac{5}{2} \).