Pregunta
Question 4 of 25 Find part of the domain of the tangent function \( f(x)=\tan x \) that lies in the set \( [0,2 \pi) \). (Use symbolic notation and fractions where needed. Give your answer for domain as intervals in the form ( \( * \), \( * \) ). Use the symbol © for infinity, \( U \) for combining intervals, and an appropriate type of parenthesis " \( ( \) " " ")", "[" or "]" depending on whether the interval is open or closed.) domain of \( f \) : \( \square \)
Ask by Sullivan Medina. in the United States
Jan 29,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
domain of \( f \) : \([0, \frac{\pi}{2}) \, U \, (\frac{\pi}{2}, \frac{3\pi}{2}) \, U \, (\frac{3\pi}{2}, 2\pi)\)
Solución
The tangent function \( f(x) = \tan x \) is undefined where the cosine of \( x \) is zero, which occurs at \( x = \frac{\pi}{2} \) and \( x = \frac{3\pi}{2} \) within the interval \( [0, 2\pi) \). Therefore, these points must be excluded from the domain.
The domain of \( f(x) = \tan x \) within \( [0, 2\pi) \) is all real numbers in this interval except \( \frac{\pi}{2} \) and \( \frac{3\pi}{2} \). This can be expressed as the union of three intervals:
\[
\text{domain of } f : [0, \tfrac{\pi}{2}) \, U \, (\tfrac{\pi}{2}, \tfrac{3\pi}{2}) \, U \, (\tfrac{3\pi}{2}, 2\pi)
\]
**Answer:**
domain of \( f \) : \([0, \tfrac{\pi}{2}) \, U \, (\tfrac{\pi}{2}, \tfrac{3\pi}{2}) \, U \, (\tfrac{3\pi}{2}, 2\pi)\)
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Bonus Knowledge
The function \( f(x) = \tan x \) is undefined at odd multiples of \( \frac{\pi}{2} \). Within the interval \( [0, 2\pi) \), these points are \( \frac{\pi}{2} \) and \( \frac{3\pi}{2} \). Therefore, the domain of \( f \) can be expressed as two separate intervals: \[ \text{domain of } f: [0, \frac{\pi}{2}) U (\frac{\pi}{2}, \frac{3\pi}{2}) U (\frac{3\pi}{2}, 2\pi) \]
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium