Responder
Here is the table filled using the function \( f(x) = \sqrt{x} + 5 \):
| \( x \) | \( f(x) \) |
|--------|------------|
| 0 | 5 |
| 1 | 6 |
| 4 | 7 |
| 9 | 8 |
| 16 | 9 |
| 25 | 10 |
| 36 | 11 |
| 49 | 12 |
| 64 | 13 |
| 81 | 14 |
Solución
Sure! Let's fill in a table using the function rule:
\[ f(x) = \sqrt{x} + 5 \]
We'll choose a set of \( x \) values, compute \( \sqrt{x} \), and then add 5 to find \( f(x) \).
| \( x \) | \( f(x) = \sqrt{x} + 5 \) |
|--------|---------------------------|
| 0 | \( \sqrt{0} + 5 = 0 + 5 = 5 \) |
| 1 | \( \sqrt{1} + 5 = 1 + 5 = 6 \) |
| 4 | \( \sqrt{4} + 5 = 2 + 5 = 7 \) |
| 9 | \( \sqrt{9} + 5 = 3 + 5 = 8 \) |
| 16 | \( \sqrt{16} + 5 = 4 + 5 = 9 \) |
| 25 | \( \sqrt{25} + 5 = 5 + 5 = 10 \) |
| 36 | \( \sqrt{36} + 5 = 6 + 5 = 11 \) |
| 49 | \( \sqrt{49} + 5 = 7 + 5 = 12 \) |
| 64 | \( \sqrt{64} + 5 = 8 + 5 = 13 \) |
| 81 | \( \sqrt{81} + 5 = 9 + 5 = 14 \) |
### Explanation:
1. **Choose \( x \) Values:** Select non-negative values for \( x \) since the square root of a negative number is not a real number.
2. **Compute \( \sqrt{x} \):** Find the square root of each \( x \) value.
3. **Add 5:** Add 5 to the square root to get \( f(x) \).
### Graphical Representation:
If you plot these points on a graph, you'll see that the function \( f(x) = \sqrt{x} + 5 \) is a square root function shifted upwards by 5 units.
### Example Calculation:
For \( x = 16 \):
\[ f(16) = \sqrt{16} + 5 = 4 + 5 = 9 \]
Feel free to use different \( x \) values to populate more entries in the table as needed!
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución