Pregunta
5. M/J 16/P21/Q2/a, \( \mathbf{d}(\mathrm{ii}) \) (a) Solve the equation \( \frac{p-1}{7-p}=5 \)
Ask by Pritchard Matthews. in Pakistan
Jan 23,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\( p=6 \)
Solución
Solve the equation \( \frac{p-1}{7-p}=5 \).
Solve the equation by following steps:
- step0: Solve for \(p\):
\(\frac{p-1}{7-p}=5\)
- step1: Find the domain:
\(\frac{p-1}{7-p}=5,p\neq 7\)
- step2: Cross multiply:
\(p-1=\left(7-p\right)\times 5\)
- step3: Simplify the equation:
\(p-1=5\left(7-p\right)\)
- step4: Expand the expression:
\(p-1=35-5p\)
- step5: Move the expression to the left side:
\(p+5p=35+1\)
- step6: Add and subtract:
\(6p=35+1\)
- step7: Add and subtract:
\(6p=36\)
- step8: Divide both sides:
\(\frac{6p}{6}=\frac{36}{6}\)
- step9: Divide the numbers:
\(p=6\)
- step10: Check if the solution is in the defined range:
\(p=6,p\neq 7\)
- step11: Find the intersection:
\(p=6\)
The solution to the equation \( \frac{p-1}{7-p}=5 \) is \( p=6 \).
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
The Deep Dive
First, let's solve the equation \( \frac{p-1}{7-p}=5 \). To eliminate the fraction, we can cross-multiply, resulting in \( p - 1 = 5(7 - p) \). This simplifies to \( p - 1 = 35 - 5p \). Next, we can combine like terms: adding \( 5p \) to both sides gives us \( 6p - 1 = 35 \). Adding 1 to both sides yields \( 6p = 36 \), and finally, dividing by 6 gives \( p = 6 \). So, the solution to the equation is \( p = 6 \).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium