Pregunta
- Show that the intersection of two normal subgroups is a normal subgroup.
Ask by Barnett George. in the United States
Mar 30,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
Therefore, the intersection of two normal subgroups
and
is a normal subgroup of
.
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Como
Beyond the Answer
To prove that the intersection of two normal subgroups is also a normal subgroup, consider two normal subgroups
and
of a group
. The intersection
consists of all elements that are in both
and
. For
to be normal, it must satisfy the property that for any
and any
, the element
must also be in
. Since
and
are normal,
and
. Therefore, it follows that
, demonstrating that
is indeed a normal subgroup.
Consider two classic normal subgroups, the kernel of a group homomorphism and the image of that homomorphism. The intersection of their kernels gives rise to important results like the kernel of a composed homomorphism, further spotlighting the significance of normality in these structures. This concept finds relevance in various mathematical areas, such as group actions and the study of quotient groups.
preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium