a) \( x\left(5 x^{2}+3 x-1\right)-2 x^{2}(x-2)+12 x^{2} \) b) \( 5(x-3)+2(y+4)-\frac{7}{3}(y-2 x+3)-8 \) c) \( 15 \cdot\left[\frac{2(x-3)}{3}-\frac{4(y-x)}{5}+\frac{x+2}{15}-7\right] \) d) \( \left(x^{2}-2 x+7\right)\left(5 x^{3}+3\right)-\left(2 x^{5}-3 x^{3}-2 x+1\right) \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To truly appreciate algebraic expressions like these, one must recognize how they underpin many aspects of our world – from engineering to economics. For instance, the polynomial equations can model everything from trajectories in physics to profit maximization in a business model. Each term has its purpose, contributing to the overall solution like pieces of a puzzle. When tackling such expressions, common mistakes include forgetting to distribute correctly or mixing up signs, especially when subtracting. A smart tip is to keep your expressions organized – use parentheses generously to avoid confusion and track each step methodically. Breaking complex expressions into smaller, manageable parts can also help maintain clarity and accuracy throughout your calculations. Happy simplifying!