\( |2 w-5| \leq 9 \) Select the correct choice below and fill in any answer boxes present in your choice. A. The solution set is \( \{w \mid w \leq \square \) or \( w \geq \square\} \). (Simplify your answers.) B. The solution set is \( \{w \mid \square \leq w \leq \square\} \). (Simplify your answers.) C. The solution set is all real numbers. D. The solution is the empty set.
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To solve the inequality \( |2w - 5| \leq 9 \), we start by removing the absolute value by setting up two inequalities: 1. \( 2w - 5 \leq 9 \) 2. \( 2w - 5 \geq -9 \) Now, solve each inequality step by step: ### For the first inequality: \[ 2w - 5 \leq 9 \] \[ 2w \leq 9 + 5 \] \[ 2w \leq 14 \] \[ w \leq 7 \] ### For the second inequality: \[ 2w - 5 \geq -9 \] \[ 2w \geq -9 + 5 \] \[ 2w \geq -4 \] \[ w \geq -2 \] Combining these two results, we find: \[ -2 \leq w \leq 7 \] So, the correct choice is: B. The solution set is \( \{w \mid -2 \leq w \leq 7\} \).