Pregunta
Identify the restricted values. \( \frac{t-14}{t^{2}-2 t-24} \) If there is more than one restricted value, use the "and" button.
Ask by Hamilton Barrett. in the United States
Jan 27,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The restricted values are \( t = 6 \) and \( t = -4 \).
Solución
The restricted values are the values of \( t \) that make the denominator zero, as the function is undefined for these values.
Given the function:
\[
\frac{t - 14}{t^2 - 2t - 24}
\]
**Step 1: Set the denominator equal to zero and solve for \( t \).**
\[
t^2 - 2t - 24 = 0
\]
**Step 2: Factor the quadratic equation.**
\[
(t - 6)(t + 4) = 0
\]
**Step 3: Solve for \( t \).**
\[
t - 6 = 0 \quad \Rightarrow \quad t = 6
\]
\[
t + 4 = 0 \quad \Rightarrow \quad t = -4
\]
**Restricted Values:**
\[
t = 6 \quad \text{and} \quad t = -4
\]
So, the restricted values are \( t = 6 \) **and** \( t = -4 \).
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Bonus Knowledge
To find the restricted values of the expression \( \frac{t-14}{t^{2}-2t-24} \), we need to identify where the denominator equals zero, as these will be the values that make the expression undefined. Start by solving the quadratic equation in the denominator: 1. Factor the quadratic expression \( t^2 - 2t - 24 \): \( t^2 - 2t - 24 = (t - 6)(t + 4) \). 2. Set the factors equal to zero: - \( t - 6 = 0 \) gives \( t = 6 \). - \( t + 4 = 0 \) gives \( t = -4 \). Therefore, the restricted values are \( t = 6 \) and \( t = -4 \).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium