Pregunta
upstudy study bank question image url

2) In an arithmetic sequence \( T_{1}=(1-x)^{2} \) and \( T_{2}=1+x^{2}: \) a) Write down an expression for the common difference in terms of \( x \). b) Determine the value(s) of \( x \) if \( S_{10}=310 \). 3) Using your knowledge of series: a) Prove that the sum of the first \( n \), odd natural numbers is \( n^{2} \). b) Prove that the sum of the first \( n \), even natural numbers is \( n^{2}+n \). 4) The sum of the first 5 terms of an arithmetic sequence is 0 and the fiffth term is 8 . Determine \( \mathbf{t} \) common difference and the first term. 5) In a geometric series the first term is 36 , the last term is 16 and the sum of the series is 76 . Determine the common ratio and the number of terms in the sequence.

Ask by Welch Olson. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Problem 2:** a) The common difference \( d \) is \( 2x \). b) The values of \( x \) are \( 3 \) and \( -10 \). **Problem 3:** a) The sum of the first \( n \) odd natural numbers is \( n^{2} \). b) The sum of the first \( n \) even natural numbers is \( n^{2} + n \). **Problem 4:** - First term \( a = -8 \) - Common difference \( d = 4 \) **Problem 5:** Cannot determine the common ratio and the number of terms with the given information.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Extra Insights

In an arithmetic sequence, the common difference \( d \) can be found by subtracting the first term \( T_1 \) from the second term \( T_2 \). So, \( d = T_2 - T_1 = (1 + x^2) - (1 - x)^2 = (1 + x^2) - (1 - 2x + x^2) = 2x \). Thus, the common difference in terms of \( x \) is \( d = 2x \). To find the value(s) of \( x \) such that the sum of the first 10 terms \( S_{10} = 310 \), we can use the formula \( S_n = \frac{n}{2} \times (2T_1 + (n-1)d) \). Substituting \( n = 10 \), \( T_1 = (1-x)^2 \), and \( d = 2x \) gives us the equation \( 310 = 5 \times (2(1-x)^2 + 18x) \). Solving this equation, we can find the appropriate values for \( x \). When we sum the first \( n \) odd natural numbers \( 1 + 3 + 5 + \ldots + (2n-1) \), we can represent it using the formula \( S_n = n^2 \). To prove this, notice that adding the first and last terms gives us \( n \) pairs of \( 2n \), yielding the squared result when simplified. On the other hand, the sum of the first \( n \) even natural numbers \( 2 + 4 + 6 + \ldots + 2n \) can be simplified to \( 2(1 + 2 + 3 + \ldots + n) = n(n + 1) \), leading us to the conclusion that \( S_n = n^2 + n \) by extracting the additional \( n \) term resulting from the counting of the even integers. When you know the first term and the common difference in an arithmetic sequence, you can unravel the mystery behind your terms! Given that the sum of the first 5 terms equals \( 0 \) and the fifth term is \( 8 \), we know that the sum can also be expressed as \( 5T_1 + 10d = 0 \) and \( T_5 = T_1 + 4d = 8 \). Solving these equations will lead you to the values of the first term \( T_1 \) and the common difference \( d \). Finally, tackling the geometric series, with a first term of \( 36 \), a last term of \( 16 \), and a total sum \( S \) of \( 76 \), the common ratio \( r \) can be represented as \( a_n = ar^{n-1} \), where the total sum for a geometric sequence \( S_n = a \frac{1 - r^n}{1 - r} \). By substituting these knowns into the equation, we can derive \( r \) and the total number of terms \( n \).

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad