Pregunta
upstudy study bank question image url

A DC-9 aircraft leaves an airport from a runway whose bearing is N39 \( { }^{\circ} \mathrm{E} \). After flying for \( \frac{1}{4} \) mile, the pilot requests permission to turn \( 90^{\circ} \) and head toward the southeast. The permission is granted. After the airplane goes 1 mile in this direction, what bearing should the control tower use to locate the aircraft? What is the bearing that the control tower should use to locate the aircraft? (Do not round until the final answer. Then round to the nearest tenth as needed.) -

Ask by Hall Evans. in the United States
Jan 29,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The control tower should use a bearing of N37.0°W to locate the aircraft.

Solución

To determine the bearing that the control tower should use to locate the aircraft, we'll break down the flight path into two segments and use trigonometry to find the final position relative to the airport. ### Step 1: Initial Flight Segment - **Bearing:** N39°E - **Distance:** \( \frac{1}{4} \) mile Using a coordinate system where: - **North** is the positive \( y \)-axis. - **East** is the positive \( x \)-axis. The angle from the east (\( x \)-axis) is: \[ \theta_1 = 90^\circ - 39^\circ = 51^\circ \] **Displacement Components:** \[ \begin{align*} \Delta x_1 &= \frac{1}{4} \times \cos(51^\circ) \approx 0.1573 \text{ miles} \\ \Delta y_1 &= \frac{1}{4} \times \sin(51^\circ) \approx 0.1943 \text{ miles} \end{align*} \] ### Step 2: Turn and Second Flight Segment - **Turn:** 90° to the left (to head southeast) - **New Bearing Angle:** \( \theta_2 = 51^\circ + 90^\circ = 141^\circ \) - **Distance:** 1 mile **Displacement Components:** \[ \begin{align*} \Delta x_2 &= 1 \times \cos(141^\circ) \approx -0.7771 \text{ miles} \\ \Delta y_2 &= 1 \times \sin(141^\circ) \approx 0.6293 \text{ miles} \end{align*} \] ### Step 3: Total Displacement \[ \begin{align*} \Delta x_{\text{total}} &= \Delta x_1 + \Delta x_2 \approx 0.1573 - 0.7771 = -0.6198 \text{ miles} \\ \Delta y_{\text{total}} &= \Delta y_1 + \Delta y_2 \approx 0.1943 + 0.6293 = 0.8236 \text{ miles} \end{align*} \] ### Step 4: Calculating the Bearing The negative \( x \)-component indicates west, and the positive \( y \)-component indicates north. To find the bearing: 1. Calculate the angle \( \phi \) from the north: \[ \phi = \tan^{-1}\left(\frac{|\Delta x_{\text{total}}|}{\Delta y_{\text{total}}}\right) = \tan^{-1}\left(\frac{0.6198}{0.8236}\right) \approx 36.96^\circ \] 2. Round to the nearest tenth: \[ \phi \approx 37.0^\circ \] **Final Bearing:** \( \text{N}37.0^\circ\text{W} \) ### Conclusion The control tower should use a bearing of **N37.0°W** to locate the aircraft. **Answer:** After rounding, the tower should use a bearing of N 37.0 ° W to locate the aircraft.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the final bearing of the DC-9 aircraft for the control tower, we first need to analyze its journey. The aircraft starts by leaving the airport on a bearing of N39°E. In standard coordinate terms, this corresponds to an angle of 39° measured from North. If we map this light flight using a bit of trigonometry, the flight can be represented on a coordinate plane. 1. After flying 1/4 mile in the initial direction, the flight coordinates can be calculated using: - x = (1/4) * cos(39°) - y = (1/4) * sin(39°) 2. Next, the airplane makes a 90° turn to the southeast, which corresponds to a bearing of 135° (southeast). Flying 1 mile in this new direction gives us additional coordinates: - x = 1 * cos(135°) - y = 1 * sin(135°) 3. We add the displacement from the first leg and the second leg of the flight to find the new position. Ultimately, we need to calculate the angle from the North to the current position of the aircraft. After calculating the coordinates from both parts of the journey, we find the new position and then measure the angle from North to that position. After all calculations and adjustments, the final bearing the control tower should use to locate the aircraft is approximately **S53°E** or **133°**. So the control tower’s bearing will be **133°**.

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad