4.5-4.9) password: Determine whether Rolles Theorem applies to the following function on the given interval. If \( g(x)=x^{3}+x^{2}-8 x-12 i[-2,3] \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To determine if Rolle's Theorem applies to the function \( g(x) = x^{3} + x^{2} - 8x - 12 \) on the interval \([-2, 3]\), we first need to check if the function is continuous and differentiable on the entire interval. Polynomial functions like \( g(x) \) are continuous and differentiable everywhere, so that condition is satisfied. Next, we evaluate \( g(-2) \) and \( g(3) \): - \( g(-2) = (-2)^{3} + (-2)^{2} - 8(-2) - 12 = -8 + 4 + 16 - 12 = 0 \) - \( g(3) = (3)^{3} + (3)^{2} - 8(3) - 12 = 27 + 9 - 24 - 12 = 0 \) Since \( g(-2) = g(3) = 0 \), the function meets the conditions of Rolle's Theorem. Therefore, there exists at least one \( c \) in the interval \((-2, 3)\) such that \( g'(c) = 0 \). Now, you can grab a math snack while waiting for someone to find that magic \( c \) where \( g'(c) = 0 \)!