Pregunta
upstudy study bank question image url

Graph \( f(x)=x^{5}-4 x^{3}+x^{2}+2 \). Identify the \( x \)-intercepts and the points where the local maximums and local minimums occu intervals for which the function is increasing or decreasing. Round to the nearest hundredth, if necessary. From least to greatest, the \( x \)-intercepts are \( x \approx \square, x=1 \), and \( x \approx \square \) The local maximum is \( \square, \square \). The local minimum is \( \square, \square \). The function is increasing when \( x<\square \) and \( x>\square \) The function is decreasing when \( \square
Ask by Bowen Rodriquez. in the United States
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The \( x \)-intercepts are approximately \( x \approx -1.63, x = 1, x \approx 1.46 \). The local maximum is at \( x \approx 0.17 \). The local minimum is at \( x \approx -1.63 \). The function is increasing when \( x < -1.63 \) and \( x > 1.46 \). It is decreasing when \( -1.63 < x < 0.17 \).

Solución

To find the \( x \)-intercepts, we need to solve the equation \( f(x) = 0 \) for \( x \). Given function: \( f(x) = x^{5} - 4x^{3} + x^{2} + 2 \) To find the \( x \)-intercepts, we set \( f(x) = 0 \) and solve for \( x \): \( x^{5} - 4x^{3} + x^{2} + 2 = 0 \) To find the local maximums and local minimums, we need to find the critical points by taking the derivative of the function and setting it equal to zero. The derivative of \( f(x) \) is: \( f'(x) = 5x^{4} - 12x^{2} + 2x \) Setting \( f'(x) = 0 \) to find the critical points: \( 5x^{4} - 12x^{2} + 2x = 0 \) Solving this equation will give us the critical points where the local maximums and local minimums occur. Let's solve the equation \( 5x^{4} - 12x^{2} + 2x = 0 \) to find the critical points. Solve the equation by following steps: - step0: Solve for \(x\): \(5x^{4}-12x^{2}+2x=0\) - step1: Factor the expression: \(x\left(5x^{3}-12x+2\right)=0\) - step2: Separate into possible cases: \(\begin{align}&x=0\\&5x^{3}-12x+2=0\end{align}\) - step3: Solve the equation: \(\begin{align}&x=0\\&x\approx -1.626625\\&x\approx 0.168666\\&x\approx 1.457959\end{align}\) - step4: Rewrite: \(x_{1}\approx -1.626625,x_{2}=0,x_{3}\approx 0.168666,x_{4}\approx 1.457959\) The critical points are approximately \( x \approx -1.626625, x = 0, x \approx 0.168666, x \approx 1.457959 \). Now, let's find the local maximums and local minimums by analyzing the critical points. 1. Local Maximums: - The local maximum occurs at \( x \approx 0.168666 \). 2. Local Minimums: - The local minimum occurs at \( x \approx -1.626625 \). Now, let's determine the intervals where the function is increasing or decreasing. 1. Increasing Intervals: - The function is increasing when \( x < -1.626625 \) and \( x > 1.457959 \). 2. Decreasing Intervals: - The function is decreasing when \( -1.626625 < x < 0.168666 \). Therefore, the \( x \)-intercepts are approximately \( x \approx -1.626625, x = 1, x \approx 1.457959 \). The local maximum is approximately \( x \approx 0.168666 \). The local minimum is approximately \( x \approx -1.626625 \). The function is increasing when \( x < -1.626625 \) and \( x > 1.457959 \). The function is decreasing when \( -1.626625 < x < 0.168666 \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To graph the function \( f(x)=x^{5}-4 x^{3}+x^{2}+2 \) and find the necessary points, we start by calculating the critical points by taking the derivative. The first derivative, \( f'(x) = 5x^4 - 12x^2 + 2 \), helps us identify where the function can increase or decrease. To find the \( x \)-intercepts, set \( f(x) = 0 \) and apply numerical methods or graphing. The approximate \( x \)-intercepts are \( x \approx -2.69, x=1 \), and \( x \approx 1.69 \). After substituting back into the original function, we find that the local maximum occurs at \( (1, f(1)) \) and the local minimum occurs approximately at \( (-1.35, f(-1.35)) \). The function is increasing when \( x < -2.69 \) and \( x > 1.69 \), while it is decreasing in the interval \( -2.69 < x < 1.69 \). Don’t forget to round to the nearest hundredth! To visualize it all, sketching the graph can greatly help. Plot the \( x \)-intercepts and the maximum/minimum points to see how the function behaves! This gives context to the math and provides a clearer picture of how the function increases and decreases across its domain. It’s like watching a rollercoaster ride—up and down, all according to the math! To deepen your understanding, why not explore some calculus resources? Books like "Calculus Made Easy" by Silvanus P. Thompson can break down the concepts effectively. Online platforms also have interactive graphing calculators that can visually illustrate the changes in a function—try out Desmos or GeoGebra! Engaging with various resources can enhance both your understanding and enjoyment of calculus.

preguntas relacionadas

Latest Calculus Questions

\( \qquad \) . .2025 Праклнческая работа N.16. Формулы н прави Исследованне функций с помощью пронзводн A60.1bшee н нанsенbшee значення Функции. Часть 1. Формулы п правила дифференцирования. Теоретический матернал для изучения: Учебннк по алтебре н началам математнческого ана.твза (автор Мордковнч А.Г.) §28. Oтветьте на вопросы: 1. Запишнгте формулы дифферениирования (чему равны производные следуюших элеменгарных функииі̆): \( C \) (const), \( x,(k x+m),\left(x^{2}\right), \frac{1}{x^{1}} \sqrt{x}, \sin x, \cos x \) 2. Выпииите правила длфференцирования (можно в виде формул): пропзводная суммы ити разности, что можно делать с постоянным множителем, производная произведения, производная частного. 3. Запишите формулы дифференцирования функшй \( \chi^{n} \) tgx, \( \operatorname{ctg} x \). 4. Запишите правило дифференцирования функции (kx+m). Выполните залания: 1. Найдите производные следующих функиий: a) \( \left.y=x^{4}-7 x^{2} ; 6\right)^{y-8 \sqrt{x}+\frac{1}{x}} \); B) \( y=8 \operatorname{tg} x-\sin x \); r) \( y=\left(x^{2}+3\right)\left(x^{4}-1\right) \) 2. Найдите значение пронзводной функини в точке хо: a) \( y=x^{3}+8 x-4, x_{0}=1 \). (0) \( r=\frac{1}{r}-6, x_{0}=1 \) ; B) \( y=\sqrt{x}+5 . x_{n}=4 \)
Cálculo Russia Feb 04, 2025
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad