Pregunta
\( \left. \begin{array} { l l l } { x + 2 = y } & { \rightarrow } & { y = x + 2 } \\ { y - x = - 3 } & { \rightarrow } & { y = \square } \end{array} \right. \)
Ask by Edwards Lawson. in the United States
Feb 03,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
There is no solution to the system of equations.
Solución
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}x+2=y\\y-x=-3\end{array}\right.\)
- step1: Rewrite the expression:
\(\left\{ \begin{array}{l}y=x+2\\y-x=-3\end{array}\right.\)
- step2: Substitute the value of \(y:\)
\(x+2-x=-3\)
- step3: Simplify:
\(2=-3\)
- step4: Calculate:
\(\left\{ \begin{array}{l}x \in \varnothing \\y \in \varnothing \end{array}\right.\)
- step5: Rewrite:
\((x, y) \in \varnothing\)
The system of equations given is:
1. \( x + 2 = y \)
2. \( y - x = -3 \)
Let's analyze these equations step by step.
1. From the first equation, we can express \( y \) in terms of \( x \):
\[
y = x + 2
\]
2. Now, substituting this expression for \( y \) into the second equation:
\[
(x + 2) - x = -3
\]
3. Simplifying this gives:
\[
2 = -3
\]
This statement is false, indicating that there is no solution to the system of equations. Therefore, the final conclusion is:
**No solution**.
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Mind Expander
Did you know that this system of equations can represent a straight line on a graph? The first equation, \( y = x + 2 \), is a line with a y-intercept of 2, meaning it crosses the y-axis at that point. The second equation can be rearranged to find its slope and intercept too! To find \( y \) in the second equation \( y - x = -3 \), simply add \( x \) to both sides, giving us \( y = x - 3 \). Now you have two linear equations to work with! You can solve them together to find their intersection point, which tells you where the two lines meet on the graph.
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium