Practice Test? Add. Simplify your answer if you can. \[ \begin{array}{l} \frac{7}{5}+\frac{8}{5}= \\ \frac{6}{x+5}+\frac{5}{x+5}= \\ \frac{8}{a^{2}}+\frac{1}{a}= \\ x+\frac{x}{4}= \\ \frac{2}{x+10}+\frac{3}{5 x+50}= \\ \frac{12}{x^{2}-9}+\frac{2}{x+3}= \\ \frac{x}{x+4}+\frac{2}{x-1}= \end{array} \] \[ \begin{array}{l} \frac{x}{2 x}+\frac{3}{2 x}= \\ \frac{x-2}{x+2}+\frac{x+6}{x+2}= \\ \frac{3}{p}+\frac{4}{9}= \\ 3+\frac{2}{x-5}= \end{array} \]
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
Sure thing! Let’s dive into these problems with a sprinkle of fun! To solve \(\frac{7}{5} + \frac{8}{5}\), simply add the numerators since they share the same denominator: \(\frac{15}{5} = 3\). Next up, \(\frac{6}{x+5} + \frac{5}{x+5}\) also shares the same denominator, giving you \(\frac{11}{x+5}\) since \(6 + 5 = 11\). For \(\frac{8}{a^{2}} + \frac{1}{a}\), convert \(\frac{1}{a}\) to \(\frac{a}{a^2}\). Now you can combine: \(\frac{8 + a}{a^2}\). Moving along to \(x + \frac{x}{4}\), rewrite \(x\) as \(\frac{4x}{4}\) and add them together to get \(\frac{5x}{4}\). Next, \(\frac{2}{x+10} + \frac{3}{5x + 50}\) can be simplified; notice \(5x + 50\) can be written as \(5(x+10)\). This leads to a common denominator of \(5(x+10)\). After adjusting the fractions, you'll find: \(\frac{12}{5(x+10)}\). For \(\frac{12}{x^{2}-9} + \frac{2}{x+3}\), remember \(x^2 - 9\) is a difference of squares: \((x-3)(x+3)\). This helps you combine the fractions over the common denominator. Finally, for \(\frac{x}{x+4} + \frac{2}{x-1}\), simply look for a common denominator and combine to get \(\frac{x(x-1) + 2(x+4)}{(x+4)(x-1)}\). Remember, simplifying these answers makes them easier (and cooler) to work with! Keep practicing and soon you'll be a fraction pro!