A line has a slope of 0 and a \( y \)-intercept of \( -\frac{5}{3} \). Write its equation in slope-intercept form. Write your answer using integers, proper fractions, and improper fractions in simplest form.
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
The equation of a line in slope-intercept form is given by \( y = mx + b \), where \( m \) is the slope and \( b \) is the \( y \)-intercept. Given that the slope \( m = 0 \) and the \( y \)-intercept \( b = -\frac{5}{3} \), the equation becomes: \[ y = 0x - \frac{5}{3} \] This simplifies to: \[ y = -\frac{5}{3} \] So, the equation of the line in slope-intercept form is \( y = -\frac{5}{3} \). The fun part? This line is perfectly horizontal, sitting happily at the \( y \)-value of \( -\frac{5}{3} \) no matter where it falls along the \( x \)-axis—like a level, floating shelf of mathematical stability! Just think about it! Any time you encounter a horizontal line, you can simply remember that its slope is always 0. Just keep your eye out for those flat lines; they bring balance to the coordinate plane. They’re the calm, cool, and collected heroes of graphing!