Pregunta
upstudy study bank question image url

EXERCISE 7 You may use a calculator in this exercise. Assume that the rates remain constant. (a) What is the speed, in \( \mathrm{km} / \mathrm{h} \), of a car that travels a distance of 240 km in 3 hours? (b) The temperature in a room changed from \( 9^{\circ} \mathrm{C} \) to \( 27^{\circ} \mathrm{C} \) in 3 minutes. What is the rate change of temperature in \( { }^{\circ} \mathrm{C} / \mathrm{min} \) ? (c) If \( 50 l \) of liquid has a mass of 100 kg , what is the density of the liquid in \( \mathrm{g} / \mathrm{cm} \)

Ask by Burton Henry. in South Africa
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Part (a):** The car's speed is **80 km/h**. **Part (b):** The temperature changed at a rate of **6 °C/min**. **Part (c):** The liquid's density is **2 g/cm³**.

Solución

Let's solve each part of Exercise 7 step by step. --- ### **Part (a)** **Question:** What is the speed, in \( \mathrm{km} / \mathrm{h} \), of a car that travels a distance of 240 km in 3 hours? **Solution:** Speed is calculated using the formula: \[ \text{Speed} = \frac{\text{Distance}}{\text{Time}} \] Given: - Distance = 240 km - Time = 3 hours \[ \text{Speed} = \frac{240 \, \text{km}}{3 \, \text{h}} = 80 \, \mathrm{km/h} \] **Answer:** The speed of the car is **80  km/h**. --- ### **Part (b)** **Question:** The temperature in a room changed from \( 9^{\circ} \mathrm{C} \) to \( 27^{\circ} \mathrm{C} \) in 3 minutes. What is the rate change of temperature in \( {}^{\circ} \mathrm{C} / \mathrm{min} \)? **Solution:** The rate of temperature change is calculated using the formula: \[ \text{Rate of Change} = \frac{\Delta T}{\Delta t} \] where: - \( \Delta T \) is the change in temperature - \( \Delta t \) is the change in time Given: - Initial Temperature (\( T_i \)) = \( 9^{\circ} \mathrm{C} \) - Final Temperature (\( T_f \)) = \( 27^{\circ} \mathrm{C} \) - Time (\( \Delta t \)) = 3 minutes Calculate \( \Delta T \): \[ \Delta T = T_f - T_i = 27^{\circ} \mathrm{C} - 9^{\circ} \mathrm{C} = 18^{\circ} \mathrm{C} \] Now, calculate the rate: \[ \text{Rate of Change} = \frac{18^{\circ} \mathrm{C}}{3 \, \text{min}} = 6^{\circ} \mathrm{C}/\text{min} \] **Answer:** The rate of temperature change is **6 °C/min**. --- ### **Part (c)** **Question:** If \( 50 \, \text{l} \) of liquid has a mass of 100 kg, what is the density of the liquid in \( \mathrm{g}/\mathrm{cm}^3 \)? **Solution:** Density is calculated using the formula: \[ \text{Density} = \frac{\text{Mass}}{\text{Volume}} \] First, convert the given units to \( \mathrm{g} \) and \( \mathrm{cm}^3 \): - Mass: \( 100 \, \text{kg} = 100,000 \, \text{g} \) (since \( 1 \, \text{kg} = 1,000 \, \text{g} \)) - Volume: \( 50 \, \text{l} = 50,000 \, \text{cm}^3 \) (since \( 1 \, \text{l} = 1,000 \, \text{cm}^3 \)) Now, calculate the density: \[ \text{Density} = \frac{100,000 \, \text{g}}{50,000 \, \text{cm}^3} = 2 \, \mathrm{g}/\mathrm{cm}^3 \] **Answer:** The density of the liquid is **2 g/cm³**. ---

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the speed of the car, you simply divide the distance by the time. So, the speed is \( \frac{240 \text{ km}}{3 \text{ hours}} = 80 \text{ km/h} \). Easy-peasy! Who knew math could get you cruising down the highway smoothly! For the temperature change, you first find the change in temperature, which is \( 27^{\circ}C - 9^{\circ}C = 18^{\circ}C \). Then, you divide by the time in minutes. So it's \( \frac{18^{\circ}C}{3 \text{ min}} = 6^{\circ}C/\text{min} \). That’s some hot math happening in those 3 minutes! Now, when it comes to density, you'll want to convert the mass into grams for the correct units. Since \( 100 \text{ kg} = 100,000 \text{ g} \), dividing this mass by the volume (which needs to be in cm³) gives you density: \( \text{Density} = \frac{100,000 \text{ g}}{50,000 \text{ cm}^3} = 2 \text{ g/cm}^3 \). You've just calculated the liquid's density with style!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad