Pregunta
Simplify. Assume all variables are positive. \[ u^{\frac{9}{4}} \cdot u^{\frac{1}{4}} \] Write your answer in the form A or \( \frac{A}{B^{\prime}} \) where \( A \) and \( B \) are constants or variable expressions that have no variables in common. All exponents in your answer should be positive. ta
Ask by Ward Davey. in the United States
Jan 25,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\( u^{2}\sqrt{u} \)
Solución
Calculate or simplify the expression \( u^{9/4} * u^{1/4} \).
Simplify the expression by following steps:
- step0: Solution:
\(u^{\frac{9}{4}}\times u^{\frac{1}{4}}\)
- step1: Simplify the expression:
\(u^{\frac{9}{4}+\frac{1}{4}}\)
- step2: Add the numbers:
\(u^{\frac{5}{2}}\)
- step3: Simplify:
\(u^{2}\sqrt{u}\)
The simplified form of \( u^{\frac{9}{4}} \cdot u^{\frac{1}{4}} \) is \( u^{2}\sqrt{u} \).
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Beyond the Answer
To simplify \( u^{\frac{9}{4}} \cdot u^{\frac{1}{4}} \), you can add the exponents since the bases are the same. \[ u^{\frac{9}{4} + \frac{1}{4}} = u^{\frac{10}{4}} = u^{\frac{5}{2}} \] Thus, the simplified form is \( u^{\frac{5}{2}} \), which can also be written as \( \frac{u^5}{u^2} \) if preferred, keeping in mind the request for all exponents to be positive. So, the final answer is simply \( u^{\frac{5}{2}} \).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium