Pregunta
upstudy study bank question image url

Solve for the roots in simplest form by completing the square: \[ -5 x^{2}-10 x-50=0 \]

Ask by Graham Ellis. in the United States
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The solutions are \(x = -1 + 3i\) and \(x = -1 - 3i\).

Solución

To solve the quadratic equation by completing the square: \[ -5x^2 - 10x - 50 = 0 \] **Step 1: Simplify the Equation** First, divide the entire equation by \(-5\) to make the coefficient of \(x^2\) positive: \[ x^2 + 2x + 10 = 0 \] **Step 2: Move the Constant Term** Subtract \(10\) from both sides to isolate the quadratic and linear terms: \[ x^2 + 2x = -10 \] **Step 3: Complete the Square** To complete the square, take half of the coefficient of \(x\), which is \(1\), and square it to get \(1\). Add this to both sides: \[ x^2 + 2x + 1 = -10 + 1 \] \[ (x + 1)^2 = -9 \] **Step 4: Solve for \(x\)** Take the square root of both sides, remembering to include both the positive and negative roots: \[ x + 1 = \pm \sqrt{-9} \] \[ x + 1 = \pm 3i \] Subtract \(1\) from both sides to solve for \(x\): \[ x = -1 \pm 3i \] **Final Answer:** The solutions are \(x = -1 + 3i\) and \(x = -1 - 3i\).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve for the roots of the equation \(-5 x^{2}-10 x-50=0\) by completing the square, we first divide every term by -5: \[ x^{2} + 2x + 10 = 0 \] Next, we isolate the constant term: \[ x^{2} + 2x = -10 \] Now, we complete the square by taking half of the coefficient of \(x\) (which is 2), squaring it, and adding it to both sides: \[ x^{2} + 2x + 1 = -10 + 1 \] This simplifies to: \[ (x + 1)^{2} = -9 \] Since the right side is negative, we can take the square root of both sides: \[ x + 1 = \pm 3i \] Now, we isolate \(x\) by subtracting 1 from both sides: \[ x = -1 \pm 3i \] Thus, the roots in simplest form are: \[ x = -1 + 3i \quad \text{and} \quad x = -1 - 3i \]

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad