1 Numeric 1 point Jeremy deposited \( \$ 2,500 \) in a certificate of deposit paying \( 4.49 \% \) compounded daily for 3 years. How much will he end up with in his account? Type your answer...
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To calculate how much Jeremy will have in his account after 3 years with a \( 4.49\% \) interest rate compounded daily, we can use the formula for compound interest: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] Where: - \( A \) = the amount of money accumulated after n years, including interest. - \( P \) = the principal amount (initial deposit). - \( r \) = annual interest rate (decimal). - \( n \) = number of times that interest is compounded per year. - \( t \) = the number of years the money is invested for. In this case: - \( P = 2500 \) - \( r = 0.0449 \) - \( n = 365 \) (compounded daily) - \( t = 3 \) Plugging in the values: \[ A = 2500 \left(1 + \frac{0.0449}{365}\right)^{365 \times 3} \] Calculating this gives: \[ A \approx 2500 \left(1 + 0.000123287)\right)^{1095} \] \[ A \approx 2500 \left(1.144547\right) \] \[ A \approx 2861.37 \] So, Jeremy will end up with approximately \(\$2861.37\) in his account after 3 years.